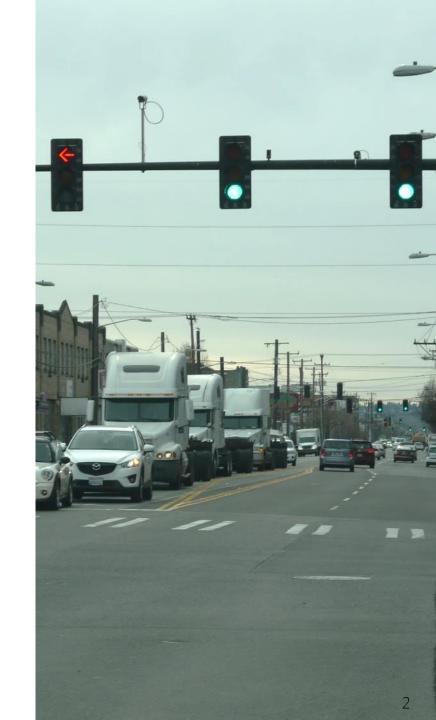

Seattle Industrial Areas Freight Access Project

Needs Assessment and Project Evaluation



Tony Mazzella and Jon Pascal Freight Advisory Board September 16, 2014

Outline

- 1. Where we are
- 2. Scoring performance
- 3. Mapping conditions
- 4. Review of toolbox treatments
- 5. Moving toward a freight project list
- 6. Next steps

FAB workshops

Issues, concerns, solutions	✓
Performance Measures	✓
Summary of Existing Conditions	✓
Future Conditions I & II	✓
Identification of freight needs Preliminary list of projects	We are here
Recommended project list	

Methodology

 Process to evaluate freight needs and develop project list

1. Evaluate freight needs

• Performance measures

2. Review assumed projects

 Projects identified through other planning efforts

- 3. Apply toolbox treatments
- Identify gaps
- Consider possible solutions

- 4. Develop project list
- Cost, schedule, location, etc.

e.g. ITS applications

Performance measures

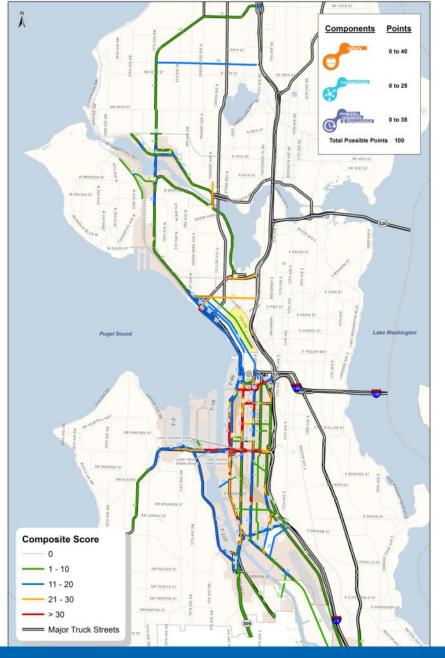
	Goal	FAP Objective	Performance Measure	Metric or Indicator
(Safety	Increase safety for all modes	Truck safetySafety for other modes	 Truck collision rates Collision history
	Truck Mobility, Reliability, & Throughput	Maintain and improve freight-truck mobility and access	 Volumes & vehicle classifications Speed Travel time Buffer index 	 Daily total, truck volumes and truck percent Average speed as percent of the posted speed limit Point-to-point travel time (selected corridors) Percent travel time to arrive on time w/ 95% certainty
6	Connectivity	Ensure network connectivity, especially for major freight inter- modal facilities	Mobility constraints	 Operational & geometric constraints Weight and height restrictions Delay from RR and bridge closure (hours per day) Improved lane-miles of Last Mile connections
	Environment	Reduce environmental impacts	Congestion/delay- from speed & travel timeStormwater management	Qualitative assessment of environmental benefits of congestion relief and drainage improvements

Preliminary performance scores

	Component	Points	Maximum	
	Truck-Bike Collision	15		
>	Truck-Pedestrian Collision	15		
Safety	Other truck-involved collisions Fatality Injury Only PDO Only	15 10 5	40	
ity	Travel Speed	1 to 25		
Mobility	Daily Truck Volumes	1 to 5	35	
Ž	Truck Percentage	1 to 5		
Connectivity	Railroad Crossings Mainline Tail Track Spur	15 10 5	25	
nne	Geometric Constraints	10	23	
0	Intersection Operations	10		
	Infrastructure Limitations (weight & height rest.)	5		
Total Possible Points		100		

Performance: Mapping conditions

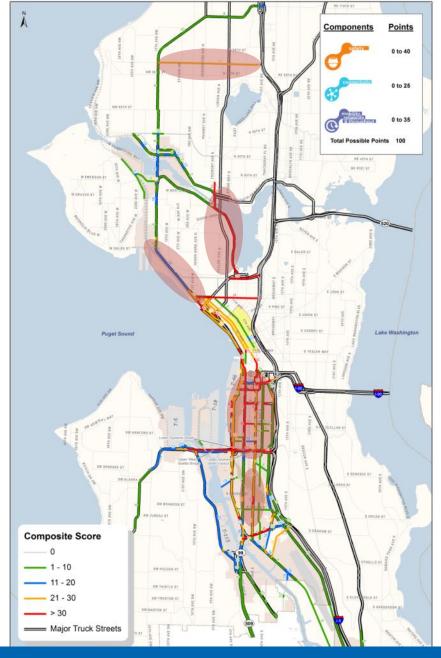
Safety


Mobility

Connectivity

Composite Score

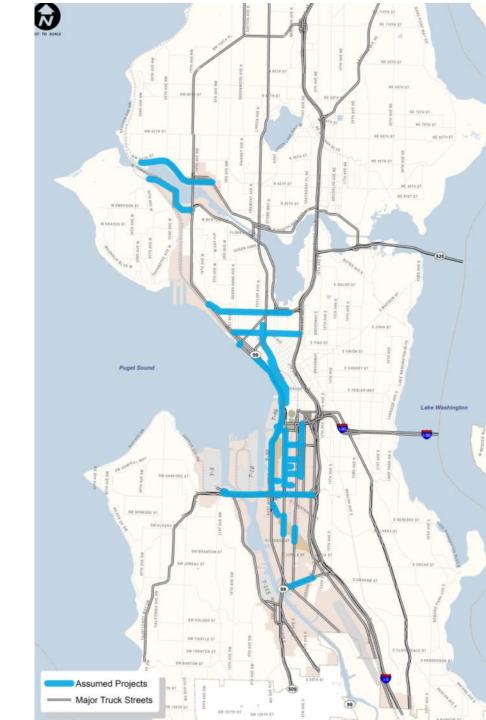
 Sum of the safety, mobility, and connectivity scores


Components	Points
Safety Score	0 to 40
Mobility Score	0 to 35
Connectivity Score	0 to 25
Total Possible Points	100

Composite Score

 Sum of the safety, mobility, and connectivity scores

Components	Points
Safety Score	0 to 40
Mobility Score	0 to 35
Connectivity Score	0 to 25
Total Possible Points	100


Determine project needs

- Review results from condition assessment
- Determine data or analysis gaps due to data or analysis limitations

Assumed improvements

- Transportation projects identified in previous planning efforts
- Major projects include:
 - Alaskan Way Viaduct Replacement
 - Mercer StreetImprovements
 - Seattle Waterfront / Alaskan Way
 - Lander Street Grade
 Separation

Identify needs

 Identify gaps not covered by existing project definitions

Options to address gaps

- 1. Refine/expand previously identified project
- 2. Identify new projects and programs

Freight toolbox treatments

Freight-specific tools for developing the project list

Freight toolbox elements

- Maintenance and repair
- Capital investments
- ITS applications
- Intersection operational changes
- Wayfinding for trucks
- Geometric improvements
- Freight management

Maintenance and repair

Capital investments

Freight toolbox elements

ITS applications

Intersection operational changes

SCORAL SC

Geometric improvements

Freight management

Apply toolbox treatments

- Verify condition assessment and determine project need.
- Analysis didn't pick up locations we know need attention.
- Scale or granularity not addressed—yet.
- Technology can only do so much, still need humans.
- Next slides are a smorgasbord of concepts.
- What makes sense, what doesn't, what's missing?

Maintenance and repair

Preliminary Projects

E Marginal Way S Rebuild

NW Market St / Leary Way / N 36th St

S Atlantic Street Rebuild

S Hanford Street Rebuild

Northgate Way / Holman Rd / 15th Ave / Elliott Ave Rebuild

S Lucile Street Rebuild

Colorado Avenue (access road) Rebuild

Diagonal Avenue S / S Oregon St / Denver Avenue S Rebuild

Capital investments

Preliminary Projects

Hanford & Main SIG's Entry Gate Improvements

South Lander Street Grade Separation

1st Avenue South Viaduct over UPRR Yard

4th Avenue South Viaduct over UPRR Yard

West Emerson Street / 21st Avenue West / West Commodore Way

ITS applications

Preliminary Projects

Next Generation ITS Improvements

Railroad Crossing ITS implementation

City Center Dynamic Signal Timing

Railroad Crossing Information Signs

Access Seattle Mobile App

1st Ave S ITS

Denny Way ITS

South Spokane Street ITS

SODO Phase 1 ITS

I-5 Connector ITS

S Michigan Street ITS

1st Ave S Bridge

Freight Position within TMC

Intersection operations

Preliminary Projects

16th Ave S and E Marginal Way S Intersection

NW Leary Way / 46th Street

Airport Way S / Edmunds Street

1st Avenue and Atlantic

Geometric improvements

Preliminary Projects

West Marginal Way / Chelan Street

W Dravus St and 15th Ave Intersection

15th Av NW and NW Market St Intersection

15th Ave W and Emerson St Intersection Improvement

Airport Way S and Edmunds St Intersection

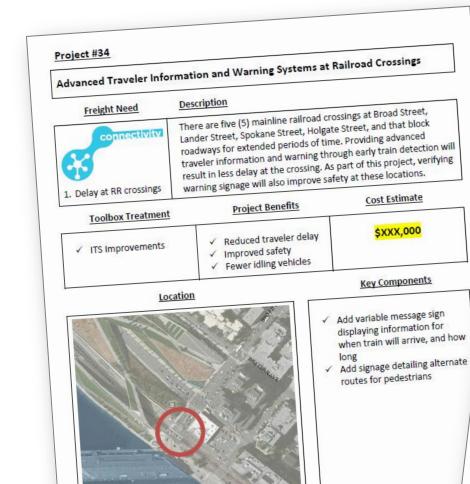
E Marginal Way S and Corson St Intersection

S Cloverdale on-ramp to SR 99

S Dallas St and 14th Av S Intersection

Freight management

- Possible programmatic approaches to address on-going freight needs:
 - Truck operational problems
 - Freight signal priority at intersections
 - Turn-radii and maintenance program
 - Include freight design standards in SDOT ROW Improvements Manual
 - Utilize improved truck data


Develop project list

- Identify relevant projects assumed from other planning efforts which address corridor and intersection problems in the study area
- Identify new projects that address corridor and intersection problems in the study area

Prioritize projects

- Factors for consideration in prioritization process:
 - Freight conditions score
 - Location on Major Truck Street, Heavy Haul Route, or First/Last Mile Connection
 - Environmental concerns
 - Cost estimate
 - Timing of need
 - Others?

Project summary sheets

Project #35 SHOLGATEST S LANDER ST

1st Avenue S Signal Timing and ITS Updates Freight Need 1. Peak Period Congestion 2. Many truck-vehicle collisions since 2011 3. Multiple Signals require retiming Description Data collected in 2013 shows that multiple intersections along 1st Avenue South are forecasted to operate at an LOS E or F by 2035. By installing ITS equipment that will enable "Freight Priority" as well as signal re-timing, freight vehicles will have to stop less often providing them with faster travel between local destinations and heavy haul routes on the freight Toolbox Treatments ✓ Intersection operations Cost Estimate ✓ ITS Improvements \$XXX,000 Project Benefits Improved Freight Mobility Reduced Greenhouse Gases ✓ Low Cost Improvement Key Components Signal retimings at 1st Ave S / S Holgate Street, 1st Ave S / S Lander Street, and 1st Ave S / S Atlantic Street to add heavy vehicle priority for northbound and southbound movements on 1st

Next steps

October / November	Prepare Draft Recommendations
December	Final report

Questions?

tony.mazzella@seattle.gov | (206) 684-0811 www.seattle.gov/transportation/freight_industrialareas.htm

http://www.seattle.gov/transportation

