B4B - *Build For Broadband* Webinar Broadband Technology 101

June 13, 2019 Presenter: Joanne Hovis, CTC Technology and Energy

POWERFUL TECHNOLOGY SOLUTIONS FOR THE CITY AND PUBLIC WE SERVE

Seattle Information Technology

B4B - Build For Broadband Initiative

Practices that support access to competitive, high-speed broadband for the current and future connectivity needs of Seattle residents.

POWERFUL TECHNOLOGY SOLUTIONS FOR THE CITY AND PUBLIC WE SERVE

Seattle Information Technology

ctc technology & energy

engineering & business consulting

Seattle B4B June 13, 2019

Broadband Infrastructure 101

© CTC Technology & Energy 2019

Agenda	
Where We Are	 The current state of broadband technology How we got here
Where We're Going	 Wireline Wireless Satellite

Fiber-to-the-Premises (FTTP)

3G

- 2000s urban/suburban
- 2000s/2010s rural
- Voice, text
- Medium-speed data
- Antennas on towers & buildings
- Fiber or microwave backhaul, copper in some areas
- Closer and denser antennas

- 2010s urban/suburban, some rural
- Voice(VoIP), text (IP)
- Smartphone service, speed few to 50 Mbps
- Antennas on towers, poles and buildings
- Multiple spectrum bands on antenna
- Backhaul fiber, occasional wireless
- Closer and denser antennas depending on density of users
 - Every few hundred feet in urban areas
 - Indoor DAS

4G Densification

Small cell sites added where needed to boost capacity

Trends to understand

5G does not yet exist	 Current small cell land (pole) rush is for 4G "densification"
"5G" is marketing and lobbying term	 Almost any new wireless deployment is being called "5G" regardless of whether it aligns with 5G definition or standards
Risk that hunger for hyped "5G" will trump other considerations and local process	 Small cell deployment entails safety, interference, and other challenges Requires utility oversight

Technology categories: 2 forms of wireless to consumers

Mobile

wireless

Fixed

wireless

- Service purchased is designed for mobility first (with speed a lesser goal)
- Comes with a price—usually slower and less reliable than "fixed"

• Effort to compete with (or alleviate need for) cable or telco connection

5G technical challenges

5G economic challenges

High cost of deployment + fiber

• Unclear what the potential is in urban/suburban

- No business case in rural areas
- Wall Street thus far unconvinced

Market opportunity not yet apparent

- Fixed: Verizon pilots panned; AT&T holding back for now
 - Will compete with cable's huge advantages
- Mobile: Unclear whether consumers will pay more
 - Enormous incremental cost to deploy but modest incremental revenues (ie, 5G customers are not new customers; they are converted 4G customers)

5G timeline & development path

Still in development stages

- Emerging in coming year or two
- Standards-writing underway
- Manufacturing path uncertain & pricing undetermined

Deployment path unclear

- Fixed: Verizon suggesting imminent deployment in some urban areas
- Mobile: Some deployment in 2020 for urban/suburban
- Neither mobile nor fixed deployment in rural, other than on major highways (possibly)

Even best case deployment will be uneven

- Focused on "high value" areas
- Service available only to some locations
- Likely increase in rural/urban and have/have not divides

Potential 5G

(((0)))

((()))

- 2020 projected urban/suburban, unclear for rural
- Few hundred Mbps to Gbps (higher speeds require mmWave)
- Mixture of small & large multiple spectrum antennas
- Fiber every few hundred feet
- Closer and denser antennas depending on density of users
- mmWave requires line-of-sight or close proximity
- No building penetration

Emerging 5G architecture

- Millimeter wave spectrum requires direct line of sight
 - Radios every two utility poles
 - Indoor & outdoor radios
 - Widespread fiber

Cable cos poised to compete with 4G/5G in mobile

- Cable modem products now available
 - Marketed as Xfinity Mobile, Spectrum Mobile etc
- Spectrum
 - Uses WiFi and other unlicensed and lightly licensed
 - May soon use CBRS (3.5 GHz) and licensed (600 MHz)
- Backhaul
 - Uses existing cable (hybrid fiber/coax) networks as communitywide backhaul networks
- National footprint emerging
 - Roams to other cable networks in other cities and to carrier

Alternative rural wireless technologies

- TV White Spaces
 - can complement unlicensed
 - well suited for terrain and foliage
 - spectrum widely available in rural areas
 - long range may reduce need for fiber

Alternative rural technologies

Unlicensed spectrum

- 5 GHz similar to WiFi
- Longer-range 3.5 GHz CBRS spectrum potentially emerging
- 60/70/80/90 GHz mmWave for high-speed and backhaul
 - Unlicensed and lightly licensed, augments fiber

Large advantage to infrastructure owners

- Cable companies on existing attachments
- Power companies on existing poles

Potentially low cost, low barrier to entry

Satellite broadband potential

Historic challenges

- Latency
- Deployment (and service) cost
- Bandwidth limitation

Potential opportunity

- Move from GEO to LEO
- Reduction in deployment costs

Satellite broadband: orbit and latency

	Orbit	Broadband speed	Latency
GeostationaryHughesViasat	22,236 mi	 2 to 30 Mbps down Far less up 	600+ ms
Low earth orbitSpaceXTelesatOneWeb	up to 1,200 mi	?	25+ ms

B4B-Build For Broadband Initiative

Building Community Awareness

- Early Telecommunication Planning
- Benefits of Infrastructure Investments

Planning problems magnified by trying to design for something that's hard to predict

Tips

Website

Webinars

www.seattle.gov/tech/initiatives/broadband/build-for-broadband

Thanks for Participating!

www.seattle.gov/tech/initiatives/broadband/building-for-broadband

Alice Lawson, Broadband & Cable Program Manager, alice.lawson@seattle.gov

POWERFUL TECHNOLOGY SOLUTIONS FOR THE CITY AND PUBLIC WE SERVE

Seattle Information Technology