

Stormwater Runoff – Toxicity and Treatment

Underwater video of an urban stormwater outfall

West Seattle diving footage by Laura James (www.tox-ick.org)

This is not a forest

Montlake Cut, Seattle

Montlake Cut, Seattle

Newly hatched salmon in their gravel redd

Pacific Salmon Declines

- * 28 distinct population segments: 5 endangered, 23 threatened
- * 176,000 sq. miles in Washington, Oregon, Idaho & California
- * 61% of Washington's land area, 55% of Oregon's, 26% of Idaho's, & 32% of California's

Coho salmon as stormwater sentinel

- Widely distributed
- Lowland streams
- > 1 yr in freshwater
- Supported by a diverse food web
- Sensitive to water quantity & quality
- ESA-Listed SOC/ Threatened

Impact of Stormwater on Coho Salmon

Impact of Stormwater on Coho Salmon

A common suite of PSM symptoms

Longfellow Creek 2002

Coho spawner mortality is widespread and recurrent in urban creeks

67%

Longfellow Creek 2003

Des Moines Creek 2004

Longfellow Creek 2005

Longfellow Creek 2012

84%

63%

Coho prespawn mortality findings

Major findings:

- Adult spawners are consistently dying each fall
- The phenomenon is widespread in urban watersheds
- Mortality rates are typically high (60-90% of total run)
- Toxic urban runoff appears to be causal

OPEN & ACCESS Freely available online

(2011, 6(8):e28013) PLOS one

Recurrent Die-Offs of Adult Coho Salmon Returning to Spawn in Puget Sound Lowland Urban Streams

Nathaniel L. Scholz^{1*}, Mark S. Myers¹, Sarah G. McCarthy², Jana S. Labenia¹, Jenifer K. McIntyre¹, Gina M. Ylitalo¹, Linda D. Rhodes¹, Cathy A. Laetz¹, Carla M. Stehr¹, Barbara L. French¹, Bill McMillan³, Dean Wilson², Laura Reed⁴, Katherine D. Lynch⁴, Steve Damm⁵, Jay W. Davis⁵, Tracy K. Collier¹

1 Northwest Fisheries Science Center, NOAA Fisheries, Seattle, Washington, United States of America, 2 Department of Natural Resources and Parks, King County, Seattle, Washington, United States of America, 3 Wild Fish Conservancy, Duvall, Washington, United States of America, 4 Seattle Public Utilities, City of Seattle, Seattle, Washington, United States of America, 5 Washington Fish and Wildlife Office, U.S. Fish and Wildlife Service, Lacey, Washington, United States of America

Impacts of Stormwater on Coho Salmon

Experimental filtration of urban runoff

Stormwater research on urban Longfellow Creek, Seattle

Urban runoff is toxic to coho embryos

Longfellow Creek experimental facility, ~ 50 days of development

Testing Biological Effects of LID

Highway Stormwater Runoff

Urban highway, Seattle, >60,000 AADT

Highway Stormwater Runoff

Sublethal effects of runoff on developing fish

Sublethal effects of runoff on developing fish include:

- Inability/delay to hatch
- Developmental delays
- Small eye phenotype (*)
- Pericardial edema (yellow arrow)
- Deformed jaws and hearts (black arrows)

Cardiac abnormalities from runoff

Urban runoff gives zebrafish bad hearts

Heart is a target for road runoff contaminants

CYP1a = Detox gene for PAHs

Recreating Coho Salmon PSM

Is exposure to urban runoff sufficient to cause coho pre-spawn mortality?

Grover's Creek facility, Suquamish Tribe

Photo: Tiffany Royal

Exposing adult coho spawners to stormwater under controlled experimental conditions

clean well water

stormwater

Exposure to urban runoff is sufficient to cause adult coho pre-spawner mortality

unexposed (3.5 hrs)

stormwater-exposed (3.5 hr)

November 11th, 2012

"What's the problem?" to "What's the solution?"

Green Stormwater Infrastructure

Emerging technologies for the built landscape may be less harmful to salmon and other aquatic animals

WSU Puyallup GSI Facility

WSU Puyallup GSI Facility

Test with Target Organisms

Did bioretention filtration prevent toxicity?

100% Survival

100% Mortality

Bioretention Prevents Mortality

Lethal response abolished by soil bioretention treatment

No sublethal toxicity in zfish embryos!

Normal Air Bladders

Normal Length

Normal Hearts

Normal (Almost) Eyes

Cardiotoxicity lost after bioretention

Filtering runoff through bioretention eliminates induction of detox enzyme (CYP1A) in skin and heart of zebrafish

Summary of Bioretention Effectiveness

Animal Model	Effect	Exposure	Eliminated	Reduced
Juv. coho	Mortality	96 h	✓	
Mayfly nymph	Mortality	48 h	✓	
Zebrafish	Mortality	96 h	✓	
Daphnid	Mortality	48 h	✓	
	Reproductive Impairment	7 d	✓	
Zebrafish	Cardiac dysfunction	48 h	✓	
	Growth impairment	96 h	✓	
	Cardiac edema	96 h	✓	
	Swim bladder	96 h	✓	
	Microphthalmia	96 h		✓
	Detox enzymes	48 h		✓
	Cardiac injury genes	48 h	✓	

Contents lists available at ScienceDirect

Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

Zebrafish and clean water technology: Assessing soil bioretention as a protective treatment for toxic urban runoff

J.K. McIntyre ^{a,*}, J.W. Davis ^b, J.P. Incardona ^c, J.D. Stark ^a, B.F. Anulacion ^c, N.L. Scholz ^c

- Washington State University Puyallup Research & Extension Center, 2606 W Pioneer Ave, Puyallup, WA 98371, USA
- b U.S. Fish & Wildlife Service Washington Fish & Wildlife Office, 510 Desmond Dr. SE, Lacey, WA 98503, USA

C NOAA–NMFS Northwest Science Center, 2725 Montlake Blvd E, Seattle, WA 98112, USA

Contents lists available at ScienceDirect

Chemosphere

journal homepage: www.elsevier.com/locate/chemosphere

Soil bioretention protects juvenile salmon and their prey from the toxic impacts of urban stormwater runoff

J.K. McIntyre a,*, J.W. Davis b, C. Hinman a, K.H. Macneale c, B.F. Anulacion c, N.L. Scholz c, J.D. Stark a

^a Washington State University, Puyallup Research and Extension Center, Puyallup, WA, USA

bU.S. Fish & Wildlife Service, Washington Fish and Wildlife Office, Lacey, WA, USA

^c National Ocean and Atmospheric Administration, National Marine Fisheries Service, Northwest Fisheries Science Center, Seattle, WA, USA

Can bioretention prevent coho PSM?

Constructing portable bioretention

Exposures and treatment at Suquamish Hatchery on Grover's Creek

Can bioretention prevent coho PSM?

Clean well water

100% Normal

Untreated runoff

100% Symptomatic

Treated runoff

??????

Stormwater runoff collections 2013 & 2014

Spromberg et al. 2015. J Ecol Applications

Adult Stormwater Filtration Exposures

Study Year	Test Date	Exposure (hours)	Control Water	Untreated Runoff	Treated Runoff
2013	Nov 8	4	100 % Live	50% Dead; 50% Symptomatic	100% Live
2013	Nov 18	24	100% Live	100% Dead	100% Live
2014	Oct 20	24	100% Live	100% Dead	100% Live
2014	Oct 22	24	100% Live	100% Dead	100% Live
2014	Oct 27	24	100% Live	100% Dead	100% Live

- All fish exposed to Untreated Runoff were symptomatic or dead at <24 h
- All Control and Treated fish alive & asymptomatic at 24 h

Pre-spawn mortality symptoms in coho spawners before and filtering runoff through bioretention

Spromberg et al. 2015. J Ecol Applications

Green Stormwater Effectiveness Summary

- Soil bioretention can prevent acute toxicity of highway runoff
 - Invertebrates
 - Developing fish
 - Juvenile and adult salmon
- Outstanding research questions:
 - Performance longevity
 - Effective sizing
 - Optimal media

How to clean up stormwater runoff?

- Green stormwater infrastructure
- Non-point pollution source controls

Source Control: Street Sweeping

Seattle Public Utilities Street Sweeping Pilot Project

- Regenerative air sweepers
- 48-90% reduction in street dirt
- No effect on sediment accumulation rate in catch basins

Kim et al. 2014. Environ Technol 35(20):2546 Effectiveness tied to frequency: Need weekly on busy roads

Source Control: Legislation

<5% copper by 2021 <0.5% copper by 2025

PASSED

<u>INTRODUCED</u>

JAN 21, 2015

Washington: SB6557 3/2010

New York: S1356A 4/2010 National Brake Pad Initiative

California: SB346 9/2010 Oregon: SB945 10/2010

Source Control: Consumer Habits

Public education campaigns

- raise awareness about pollution
- reduce pollution by changing individual actions

What YOU Can Do!

DON'T FEED THE MONSTER!

- Pick up pet waste
- Properly dispose of waste
- Practice natural yard care
- Protect & foster wild spaces
- Keep water in your yard with rain barrels, rain gardens, and porous surfaces
- Use car wash facilities
- Walk, bike and ride public transit
- Support and implement LID
- Support legislation to control contaminant sources

Acknowledgments

NOAA Fisheries:

David Baldwin
Allisan Beck
Richard Edmunds
Barbara French
John Incardona
Jana Labenia
Cathy Laetz
Tiffany Linbo
Kate Macneale
Julann Spromberg
Mark Tagal
Lyndal Johnson
MJ Willis

WSU-Puyallup REC FMO Crew Oriki Jack Richard Bembenek Emma Mudrock **Suquamish Tribe**Mike Huff

Funding Support:

EPA Region 10

NOAA Coastal Storms Program

USFWS Environmental Contaminants Program

Washington Sea Grant

WA Dept. Ecology

Russell Foundation

Bullitt Foundation

