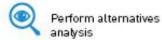
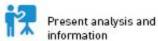

Agenda


- WELCOME
- UPDATES
 - JUNE ENGAGEMENT RESULTS
 - UPDATED SCOPE & SCHEDULE
 - ALTERNATIVE ANALYSIS STATUS
- DISCUSSION OF 3 ALTERNATIVES
 - COST ESTIMATE DETAILS
 - TRAFFIC MODELING DETAILS
 - REMAINING CONCERNS/QUESTIONS
- NEXT STEPS

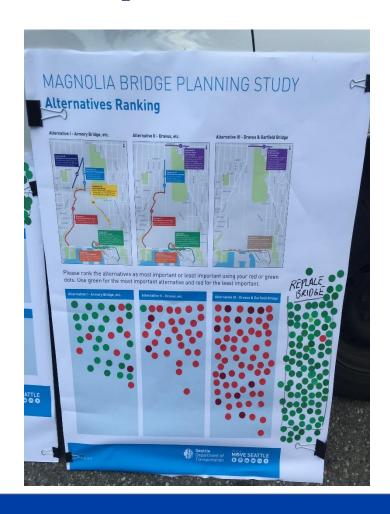

Where We've Been

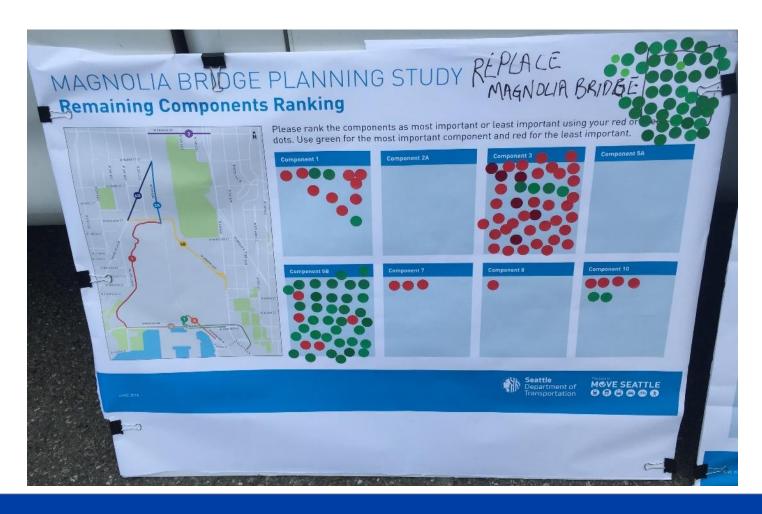
Listening to community & agencies

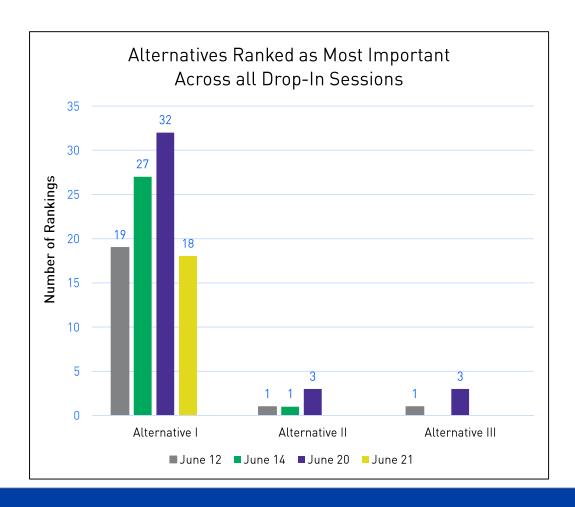
JUNE 2018

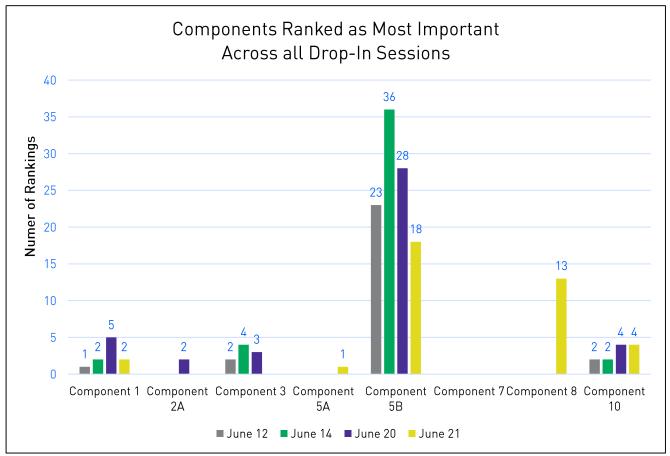
277 CC
Drop-in session participants

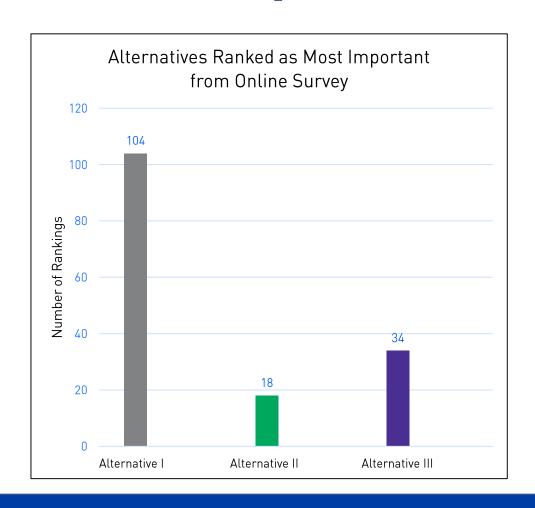

186 Online alternatives survey participants

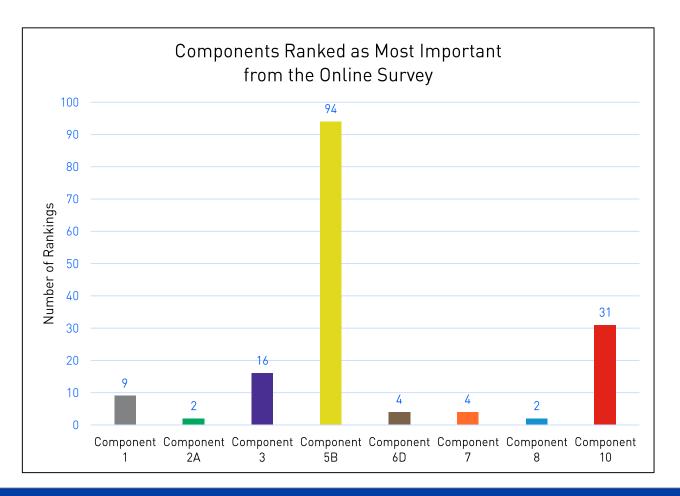

200
Online open house comments


June Community Engagement

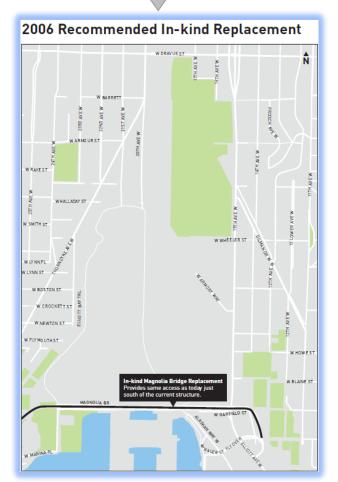

Drop-In Session Results




Drop-In Session Results



Online Open House Results

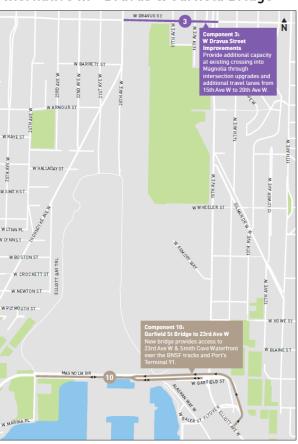


What We Heard

- The majority of commenters want the in-kind replacement of the Magnolia Bridge
- Alternative I and Component 5B ranked highest
- Component 5B W Armory Way Bridge concern: would impact nearby residences on Halladay St
- Many felt W Dravus St could not be improved enough to support the additional trips
- See our website for a full community engagement summary: https://www.seattle.gov/transportation/magnoliabridgeplanning

How We're Responding

Updated analysis of In-Kind Replacement added in response to community comments & engagement


Alternative I - Armory Bridge, etc.

Alternative II - Dravus, etc.

Alternative III - Dravus & Garfield Bridge

Updated Planning Study Scope & Schedule

- Authorized Scope and Schedule addendum to update the cost and traffic analysis for the in-kind replacement option
- Extending planning study to the end of 2018
 - Present in-kind replacement and recommended alternative
 - Provide direct comparison of costs
 - Provide direct comparison of traffic impacts

ALTERNATIVE ANALYSIS STATUS

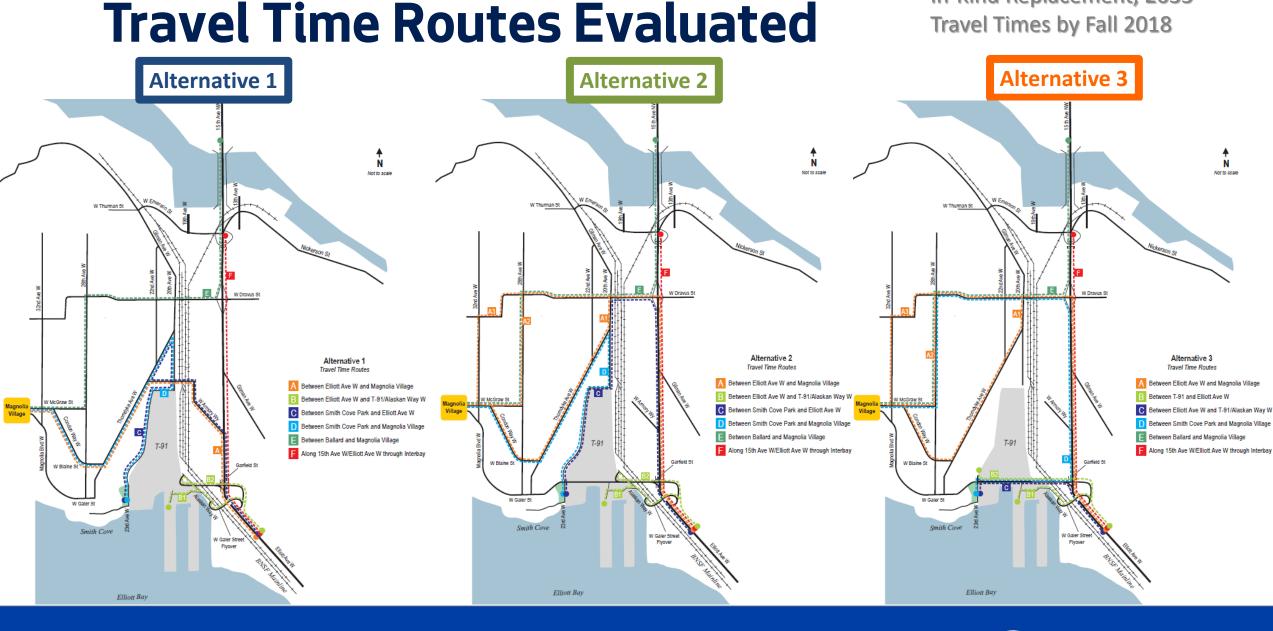
- SUMMER 2018 Complete Alternatives Analysis
- FALL 2018 In-Kind Replacement Analysis

Total Cost - In-kind Replacement & Alternatives

								In-kind	Ala						In-kind	
					Alternative 1	Alternative 2	Alternative 3	Replacement	A	Alternative 1		Alternative 2 Alternative 3		Iternative 3	Replacement	
#	Summary Cost Item Description	Unit		Unit Price	Quantity	Quantity	Quantity	Quantity	Estimated Cost		Esti	mated Cost	Estimated Cost		Est	timated Cost
1	Component 1 Construction Cost	LS	\$	10,116,000	1	1			\$	10,116,000	\$	10,116,000	\$	-	\$	-
2A	Component 2A Construction Cost	LS	\$	1,334,000	1	1			\$	1,334,000	\$	1,334,000	\$	-	\$	-
3	Component 3 Construction Cost	LS	\$	38,682,000		1	1		\$	-	\$	38,682,000	\$	38,682,000	\$	-
5B	Component 5B Construction Cost	LS	\$	41,187,000	1				\$	41,187,000	\$	-	\$	-	\$	-
6D	Component 6D Construction Cost	LS	\$	2,909,000	1				\$	2,909,000	\$	-	\$	-	\$	-
7	Component 7 Construction Cost	LS	\$	27,647,500	1	1			\$	27,647,500	\$	27,647,500	\$	-	\$	-
8	Component 8 Construction Cost	LS	\$	1,604,000	1	1			\$	1,604,000	\$	1,604,000	\$	-	\$	-
10	Component 10 Construction Cost	LS	\$	41,496,500			1		\$	-	\$	-	\$	41,496,500	\$	-
Demo	Magnolia Bridge Demolition	LS	\$	6,673,500	1	1	1	1	\$	6,673,500	\$	6,673,500	\$	6,673,500	\$	6,673,500
Repl	HNTB Replacement Cost 2018\$	LS	\$	191,122,500				1	\$	-	\$	-	\$	-	\$	191,122,500
							Construction Cost Total			91,471,000	\$	86,057,000	\$	86,852,000	\$	197,796,000
						Soft Cost % *				40%		40%		40%		30%
						Soft Cost \$			\$	36,588,400	\$	34,422,800	\$	34,740,800	\$	59,338,800
						Property Acquisition Costs \$				63,704,700	\$	61,264,500	\$	44,406,800	\$	34,020,700
							T	OTAL BASE COST	\$	191,764,100	\$	181,744,300	\$	165,999,600	\$	291,155,500
							Project	Contingency (30%)*	\$	58,000,000	\$	55,000,000	\$	50,000,000	\$	87,000,000
						2018 TOTAL COST** \$			250,000,000	\$	237,000,000	\$	216,000,000	\$	378,000,000	
								TED COST RANGE		\$200-\$350M		\$190-\$310M		\$170-\$280M		\$340-\$420M
							*Soft Cost an	d Contingency % bas	sed c	on SDOT standa	ards fo	or a project's de	esign	level		

^{**}Total Cost adjusted to Estimated Cost Range based on American Association of Cost Engineering (AACE) Standards for projects in different stages of definition and design

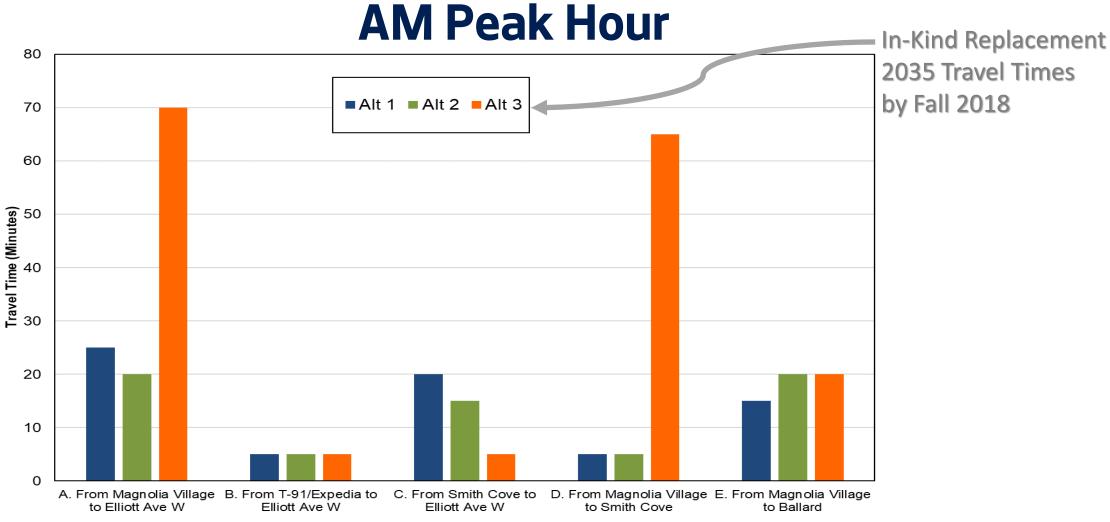
American Association of Cost Engineering (AACE) Cost Estimate Classification


	Primary Characteristic	Secondary Characteristic										
ESTIMATE CLASS	MATURITY LEVEL OF PROJECT DEFINITION DELIVERABLES Expressed as % of complete definition	END USAGE Typical purpose of estimate	METHODOLOGY Typical estimating method	EXPECTED ACCURACY RANGE Typical variation in low and high ranges [a]								
Class 5	0% to 2%	Functional area, or concept screening	SF or m ² factoring, parametric models, judgment, or analogy	L: -20% to -30% H: +30% to +50%								
Class 4	1% to 15%	or Schematic design or concept study	Parametric models, assembly driven models	L: -10% to -20% H: +20% to +30%								
Class 3	10% to 40%	Design development, budget authorization, feasibility	Semi-detailed unit costs with assembly level line items	L: -5% to -15% H: +10% to +20%								
Class 2	30% to 75%	Control or bid/tender, semi-detailed	Detailed unit cost with forced detailed take-off	L: -5% to -10% H: +5% to +15%								
Class 1	65% to 100%	Check estimate or pre bid/tender, change order	Detailed unit cost with detailed take-off	L: -3% to -5% H: +3% to +10%								

Note: [a] The state of construction complexity and availability of applicable reference cost data affect the range markedly. The +/- value represents typical percentage variation of actual cost from the cost estimate after application of contingency (typically at a 50% level of confidence) for given scope.

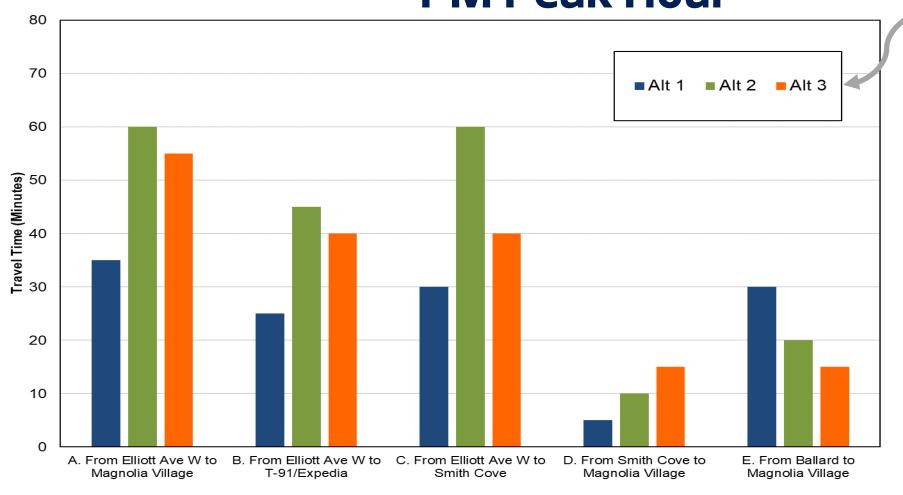
Table 1 - Cost Estimate Classification Matrix for Building and General Construction Industries

Per AACE International Recommended Practice No. 56R-08



In-Kind Replacement, 2035

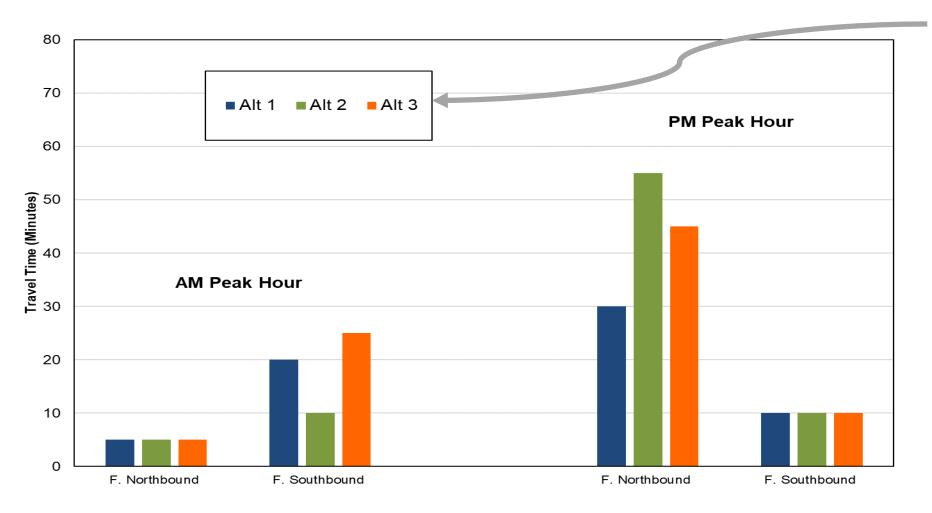
2035 Travel Times - Leaving Magnolia/Interbay



2035 Travel Times by Fall 2018

Travel Route Origin and Destination

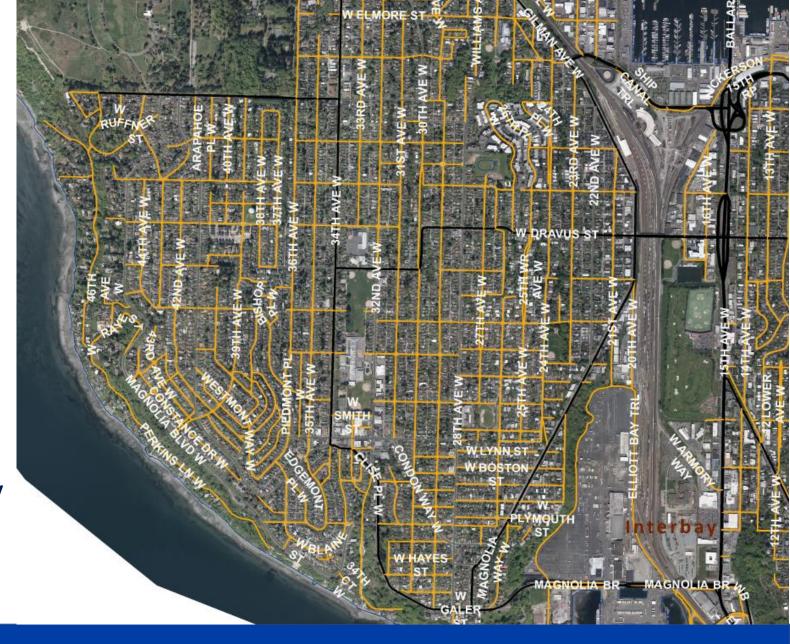
2035 Travel Times - Leaving Magnolia/Interbay PM Peak Hour



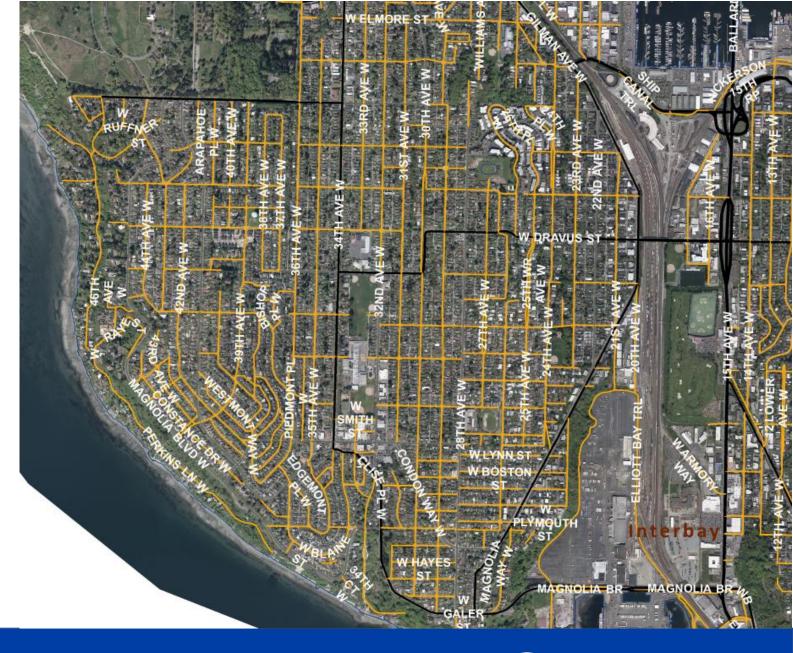
In-Kind Replacement 2035 Travel Times by Fall 2018

Travel Route Origin and Destination

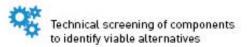
2035 Travel Times - Along 15th/Elliott Ave Corridor

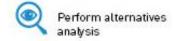

In-Kind Replacement 2035 Travel Times by Fall 2018

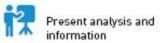
Direction of Travel on Elliott/15th Avenue Corridor


Preliminary Recommendations

- Access improvements beyond new components
 - Thorndyke Ave W
 - W Blaine St
 - Condon Way W
- Economic Impact
 - Intercept Survey
 - Considerations for future environmental impact study
- Emergency Response


Remaining Concerns or Questions...





Planning Study Process		2017					2018										
ı tamı	illig Study i rocess	Sept	Oct	Nov	Dec	Jan	Feb	Mar	Арг	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec
經 ◎ ₩	Stakeholder Workshops Port of Seattle, Magnolia Chamber, Magnolia Community Council, King County Metro, Seattle Parks and Recreation, Seattle Department of Transportation, Sound Transit, Queen Anne Community Council, Magnolia Interbay Queen Anne Disaster Preparedness, Seneca/Expedia, BNSF																
經	Community Councils and Other Community Group Briefings to inform public of the study purpose and present initial components for comment and questions																
磁訊	Present to SDOT Directors, Mayor, and Council Members to review initial and technical screening and preseAnt alternatives																
47.	Drop-in Sessions and Online Open House & Survey to describe Magnolia Bridge history, review evaluation process, present alternatives, and collect community input																
Q †	Finalize Alternatives Analysis and Present to SDOT Directors, Mayor, and elected officials to summarize community feedback, present the in-kind replacement and an alternative cost & traffic trade-offs, and frame the funding package discussion																
12	Ongoing Outreach Activities to conduct an intercept survey in Magnolia Village to better understand behaviors among people visiting and working there and share results of public input and technical analysis																

Questions

Wes Ducey I Wes. Ducey@Seattle.gov

Dawn Schellenberg I <u>Dawn.Schellenberg@Seattle.gov</u>