Agenda - WELCOME - UPDATES - JUNE ENGAGEMENT RESULTS - UPDATED SCOPE & SCHEDULE - ALTERNATIVE ANALYSIS STATUS - DISCUSSION OF 3 ALTERNATIVES - COST ESTIMATE DETAILS - TRAFFIC MODELING DETAILS - REMAINING CONCERNS/QUESTIONS - NEXT STEPS #### Where We've Been Listening to community & agencies #### **JUNE 2018** 277 CC Drop-in session participants 186 Online alternatives survey participants 200 Online open house comments ## **June Community Engagement** #### **Drop-In Session Results** #### **Drop-In Session Results** #### **Online Open House Results** #### What We Heard - The majority of commenters want the in-kind replacement of the Magnolia Bridge - Alternative I and Component 5B ranked highest - Component 5B W Armory Way Bridge concern: would impact nearby residences on Halladay St - Many felt W Dravus St could not be improved enough to support the additional trips - See our website for a full community engagement summary: https://www.seattle.gov/transportation/magnoliabridgeplanning #### How We're Responding Updated analysis of In-Kind Replacement added in response to community comments & engagement #### Alternative I - Armory Bridge, etc. Alternative II - Dravus, etc. Alternative III - Dravus & Garfield Bridge #### **Updated Planning Study Scope & Schedule** - Authorized Scope and Schedule addendum to update the cost and traffic analysis for the in-kind replacement option - Extending planning study to the end of 2018 - Present in-kind replacement and recommended alternative - Provide direct comparison of costs - Provide direct comparison of traffic impacts #### **ALTERNATIVE ANALYSIS STATUS** - SUMMER 2018 Complete Alternatives Analysis - FALL 2018 In-Kind Replacement Analysis #### **Total Cost - In-kind Replacement & Alternatives** | | | | | | | | | In-kind | Ala | | | | | | In-kind | | |------|--------------------------------|------|----|-------------|---------------|-------------------------------|-------------------------|---------------------|----------------|----------------|-------------|-----------------------------|----------------|--------------|-------------|--------------| | | | | | | Alternative 1 | Alternative 2 | Alternative 3 | Replacement | A | Alternative 1 | | Alternative 2 Alternative 3 | | Iternative 3 | Replacement | | | # | Summary Cost Item Description | Unit | | Unit Price | Quantity | Quantity | Quantity | Quantity | Estimated Cost | | Esti | mated Cost | Estimated Cost | | Est | timated Cost | | 1 | Component 1 Construction Cost | LS | \$ | 10,116,000 | 1 | 1 | | | \$ | 10,116,000 | \$ | 10,116,000 | \$ | - | \$ | - | | 2A | Component 2A Construction Cost | LS | \$ | 1,334,000 | 1 | 1 | | | \$ | 1,334,000 | \$ | 1,334,000 | \$ | - | \$ | - | | 3 | Component 3 Construction Cost | LS | \$ | 38,682,000 | | 1 | 1 | | \$ | - | \$ | 38,682,000 | \$ | 38,682,000 | \$ | - | | 5B | Component 5B Construction Cost | LS | \$ | 41,187,000 | 1 | | | | \$ | 41,187,000 | \$ | - | \$ | - | \$ | - | | 6D | Component 6D Construction Cost | LS | \$ | 2,909,000 | 1 | | | | \$ | 2,909,000 | \$ | - | \$ | - | \$ | - | | 7 | Component 7 Construction Cost | LS | \$ | 27,647,500 | 1 | 1 | | | \$ | 27,647,500 | \$ | 27,647,500 | \$ | - | \$ | - | | 8 | Component 8 Construction Cost | LS | \$ | 1,604,000 | 1 | 1 | | | \$ | 1,604,000 | \$ | 1,604,000 | \$ | - | \$ | - | | 10 | Component 10 Construction Cost | LS | \$ | 41,496,500 | | | 1 | | \$ | - | \$ | - | \$ | 41,496,500 | \$ | - | | Demo | Magnolia Bridge Demolition | LS | \$ | 6,673,500 | 1 | 1 | 1 | 1 | \$ | 6,673,500 | \$ | 6,673,500 | \$ | 6,673,500 | \$ | 6,673,500 | | Repl | HNTB Replacement Cost 2018\$ | LS | \$ | 191,122,500 | | | | 1 | \$ | - | \$ | - | \$ | - | \$ | 191,122,500 | | | | | | | | | Construction Cost Total | | | 91,471,000 | \$ | 86,057,000 | \$ | 86,852,000 | \$ | 197,796,000 | | | | | | | | Soft Cost % * | | | | 40% | | 40% | | 40% | | 30% | | | | | | | | Soft Cost \$ | | | \$ | 36,588,400 | \$ | 34,422,800 | \$ | 34,740,800 | \$ | 59,338,800 | | | | | | | | Property Acquisition Costs \$ | | | | 63,704,700 | \$ | 61,264,500 | \$ | 44,406,800 | \$ | 34,020,700 | T | OTAL BASE COST | \$ | 191,764,100 | \$ | 181,744,300 | \$ | 165,999,600 | \$ | 291,155,500 | | | | | | | | | Project | Contingency (30%)* | \$ | 58,000,000 | \$ | 55,000,000 | \$ | 50,000,000 | \$ | 87,000,000 | | | | | | | | 2018 TOTAL COST** \$ | | | 250,000,000 | \$ | 237,000,000 | \$ | 216,000,000 | \$ | 378,000,000 | | | | | | | | | | | TED COST RANGE | | \$200-\$350M | | \$190-\$310M | | \$170-\$280M | | \$340-\$420M | | | | | | | | | *Soft Cost an | d Contingency % bas | sed c | on SDOT standa | ards fo | or a project's de | esign | level | | | ^{**}Total Cost adjusted to Estimated Cost Range based on American Association of Cost Engineering (AACE) Standards for projects in different stages of definition and design # American Association of Cost Engineering (AACE) Cost Estimate Classification | | Primary Characteristic | Secondary Characteristic | | | | | | | | | | | |-------------------|---|---|---|--|--|--|--|--|--|--|--|--| | ESTIMATE
CLASS | MATURITY LEVEL OF PROJECT DEFINITION DELIVERABLES Expressed as % of complete definition | END USAGE
Typical purpose of estimate | METHODOLOGY Typical estimating method | EXPECTED ACCURACY RANGE Typical variation in low and high ranges [a] | | | | | | | | | | Class 5 | 0% to 2% | Functional area, or concept screening | SF or m ² factoring,
parametric models,
judgment, or analogy | L: -20% to -30%
H: +30% to +50% | | | | | | | | | | Class 4 | 1% to 15% | or Schematic design or
concept study | Parametric models,
assembly driven
models | L: -10% to -20%
H: +20% to +30% | | | | | | | | | | Class 3 | 10% to 40% | Design development,
budget authorization,
feasibility | Semi-detailed unit
costs with assembly
level line items | L: -5% to -15%
H: +10% to +20% | | | | | | | | | | Class 2 | 30% to 75% | Control or bid/tender,
semi-detailed | Detailed unit cost with
forced detailed take-off | L: -5% to -10%
H: +5% to +15% | | | | | | | | | | Class 1 | 65% to 100% | Check estimate or pre
bid/tender, change order | Detailed unit cost with detailed take-off | L: -3% to -5%
H: +3% to +10% | | | | | | | | | Note: [a] The state of construction complexity and availability of applicable reference cost data affect the range markedly. The +/- value represents typical percentage variation of actual cost from the cost estimate after application of contingency (typically at a 50% level of confidence) for given scope. Table 1 - Cost Estimate Classification Matrix for Building and General Construction Industries Per AACE International Recommended Practice No. 56R-08 In-Kind Replacement, 2035 ## 2035 Travel Times - Leaving Magnolia/Interbay **2035 Travel Times** by Fall 2018 **Travel Route Origin and Destination** ## 2035 Travel Times - Leaving Magnolia/Interbay PM Peak Hour In-Kind Replacement 2035 Travel Times by Fall 2018 **Travel Route Origin and Destination** #### 2035 Travel Times - Along 15th/Elliott Ave Corridor In-Kind Replacement 2035 Travel Times by Fall 2018 Direction of Travel on Elliott/15th Avenue Corridor ## **Preliminary Recommendations** - Access improvements beyond new components - Thorndyke Ave W - W Blaine St - Condon Way W - Economic Impact - Intercept Survey - Considerations for future environmental impact study - Emergency Response # Remaining Concerns or Questions... | Planning Study Process | | 2017 | | | | | 2018 | | | | | | | | | | | |-------------------------------|--|------|-----|-----|-----|-----|------|-----|-----|-----|-----|-----|-----|------|-----|-----|-----| | ı tamı | illig Study i rocess | Sept | Oct | Nov | Dec | Jan | Feb | Mar | Арг | May | Jun | Jul | Aug | Sept | Oct | Nov | Dec | | 經 ◎ ₩ | Stakeholder Workshops Port of Seattle, Magnolia
Chamber, Magnolia Community Council, King County
Metro, Seattle Parks and Recreation, Seattle Department
of Transportation, Sound Transit, Queen Anne Community
Council, Magnolia Interbay Queen Anne Disaster
Preparedness, Seneca/Expedia, BNSF | | | | | | | | | | | | | | | | | | 經 | Community Councils and Other Community Group
Briefings to inform public of the study purpose and present
initial components for comment and questions | | | | | | | | | | | | | | | | | | 磁訊 | Present to SDOT Directors, Mayor, and Council Members
to review initial and technical screening and preseAnt
alternatives | | | | | | | | | | | | | | | | | | 47. | Drop-in Sessions and Online Open House & Survey
to describe Magnolia Bridge history, review evaluation
process, present alternatives, and collect community input | | | | | | | | | | | | | | | | | | Q † | Finalize Alternatives Analysis and Present to SDOT
Directors, Mayor, and elected officials to summarize
community feedback, present the in-kind replacement
and an alternative cost & traffic trade-offs, and frame the
funding package discussion | | | | | | | | | | | | | | | | | | 12 | Ongoing Outreach Activities to conduct an intercept survey in Magnolia Village to better understand behaviors among people visiting and working there and share results of public input and technical analysis | | | | | | | | | | | | | | | | | #### Questions Wes Ducey I Wes. Ducey@Seattle.gov Dawn Schellenberg I <u>Dawn.Schellenberg@Seattle.gov</u>