Drinking Water Quality

WSAC

March 9, 2016

- Lead and Copper Rule (LCR)
- Monitored, Not Detected
- Annual Water Quality Report

Seattle Public Utilities Regional Lead and Copper Monitoring Program Comparison of 90th % Residential Lead Levels

Sampling Round; Total Number of Samples

LCR Update – lead sources, Flint

Seattle Public Utilities

Graphic from http://www.mlive.com/news/flint

LCR Update – lead sources

Graphic edited from http://avonlakewater.org/for-our-customers

SPU Corrosion Control History

LCR Update - Corrosion Control

- Seattle's untreated source water is considered "soft"
- Snow melt and rainwater have low mineral content
- Can be aggressive or corrosive to plumbing materials
- Untreated:
 - pH is 6.8 7.4
 - alkalinity 6.4 8.9 mg/L as CaCO₃
- Multiple corrosion control studies set optimized targets:
 - pH 8.2
 - alkalinity 19 mg/L

LCR Update - Corrosion Control

- Monitored daily at the treatment facilities
 - Tolt: addition of lime and CO²

рН	Outlet connection to Tolt Pipeline No. 1. (1).	Between 7.5 and 8.5, as stipulated by SPU, \pm 0.2 pH units 95% of the time and \pm 0.4 pH units 100% of the time, based upon continuous monitoring.
Alkalinity (mg/L as CaCO3)	Outlet connection to Tolt Pipeline No. 1. (1).	Between 10.0 and 30.0 mg/L as CaCO ₃ , as stipulated by SPU, ± 2.0 mg/L based upon a daily grab sample. (10)

• Cedar: addition of lime

рН	Outlet from each	Between 7.5 and 8.5, as stipulated by
	clearwell ⁽¹⁾	SPU, <u>+</u> 0.2 pH units 95% of the time
		and <u>+</u> 0.4 pH units 100% of the time,
		based upon continuous monitoring.

- 10 distribution sites (direct service and wholesale) monitored/ reported monthly to WDOH
- Additional locations monitored several times each week

LRC Update - Participants

Region 1	Region 2	Region 3:	Region 4:
Cedar:	Tolt:		
Cedar River	Bothel	Bellevue	Seattle
Mercer Island	Duvall		
Soos Creek	Kirkland		
Tukwila	Northshore		
WD125	Shoreline		
WD 20	Woodinville		
WD 45	WD119		
WD 49			

Systems that collect independently:

Highline, Redmond, Olympic View, Edmonds, Skyway, WD90, Lake Forest Park, Renton, SeaTac, Covington, Issaquah

LCR Update - Where do we sample?

- At residential customer taps
- From volunteer participants
- With "High Risk" homes, defined as....

... a home with the potential for higher levels of lead in the drinking water due to the leaching of metals from the plumbing system containing copper piping and tin-lead solder. The City of Seattle banned the use of tin-lead solder in 1980, so homes built or replumbed with copper piping prior to 1980 are in the "high risk" category.

LCR Update - How do we sample?

- 1 Liter Plastic Bottles
- Delivered to customer residences
- With Instructions
 - Filled from cold water tap
 - After minimum 6-hour standing time

Residential Sampling Instructions

Thank you for participating again in the Lead and Copper Monitoring Program. The information collected at your homes helps us determine if we are providing optimum treatment of our drinking water. To insure the information collected is accurate, please follow the instructions below.

1. It is very important that no water is used for at least six hours before collecting the morning standing water sample. Please indicate the approximate time of last water use and the time of sample collection so that we can record the standing time for your sample.

2. At the COLD WATER KITCHEN TAP and before using water anywhere in or outside the house, slowly fill the larger (1 liter) bottle to the fill line near the top. Please take care not to spill any of this water or overfill the bottle.

3. If water was accidentally used prior to sampling, or other difficulties were experienced, please notify the contact person listed below to arrange for another collection.

4. Please leave the bottles by you front door for pick-up the same morning.

Seattle Seattle Utilities

LCR Update - Who receives results?

• Every participating resident gets an individual letter

 Every customer receiving the SPU Annual Water Quality Report

LEAD AND COPPER MONITORING RESULTS					
PARAMETER AND UNITS	MCLG	ACTION LEVEL+	2013 RESULTS*	HOMES EXCEEDING ACTION LEVEL	SOURCE
Lead, ppb	0	15	3	0 of 50	Corrosion of household
Copper, ppm	1.3	1.3	0.10	0 of 50	plumbing systems

+ The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

* 90th Percentile: 90 percent of the samples were less than the values shown.

Although there is no detectable lead in our source water, tests show there are sometimes elevated levels of lead and copper in some samples, primarily because of corrosion of household plumbing systems. These results show that it is very important that homeowners, business owners and others be aware of their type of plumbing, and how the plumbing affects their drinking water quality.

The majority of homes have some risk of lead contamination in water that sits in pipes for longer than two hours. Where you live, when your plumbing was installed and what type of plumbing you have all play a part in determining your potential exposure level. SPU treats the water to minimize the tendency for lead to enter the water, and results show that we have been very successful at this.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young

children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. SPU is responsible for providing high-quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your top for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested, Information on lead in chinking water, testing methods and steps you can take to minimize exposure is available from the Safe Drinking Water Holline or at

http://www.epa.gov/safewater/lead.

Lastly, remember that drinking water is only a minor contributor to overall exposure to lead. Other sources, including paint, soil and food, also contribute.

LCR Update – What can customers do?

- A few simple steps you can take in the home to reduce the risk of lead in your drinking water...
 - If water has been standing in pipes for over 2 hours, flush out the pipes by running the tap until you feel a temperature change before using for drinking or cooking
 - Always draw drinking and cooking water from COLD water tap -- lead dissolves more quickly in hot water.
 - Never make baby formula or other drinks or food for children from the HOT water tap. Start with water taken from the cold water faucet (after flushing) and warm it if necessary
 - If you are making plumbing changes, be sure to select low-lead or nolead fixtures. As of January 2014, a new federal law is in effect, reducing the amount of lead in plumbing fixtures from 8 percent to 0.25 percent. Manufacturers are already offering faucets that meet the new standard

Monitored, Not Detected

Last Revised - February 26, 2016 THE FOLLOWING WERE MONITORED FOR, BUT NOT DETECTED FOR EITHER THE CEDAR OR TOLT SUPPLIES (Monitoring location is after treatment, prior to entry to distribution system for report covering 2015 data);

monitoring loo	adon to antor do	aution, prior to entry to alounou	aon system for report covering 20	io addy.
REGULATED VOCs \$\$		UNREGULATED VOCs \$\$	REGULATED SOCs %	UNREGULATED SOCs%
1 - Dicbloroethylene (DCE)		1.1 - Dichloroethane	Alachlor	Arochlor 1221
1 1 Trichloroethane (TCA)		1.1 - Dichloropropene	Atrazine	Arochlor 1232
12 - Trichloroethane		1112 - Tetrachloroethane	Benzo(a)pyrene	Arochlor 1242
2 - Dichloroet	hane	1 1 2 2 -Tetrachloroethane	Chlordane	Arochlor 1248
2 - Dichloroor	onane	123 - Trichlorobenzene	Di/2-ethylbeyyl)adinate	Arochlor 1254
24 Trichlord	benzene	1.2.3 Trichloropropage	Di(2 ethylhexyl)adipate	Arachior 1260
2,4 - Theniore	ppenzene	1,2,3 - Trimethylhenzene	Di(2-euryinexyi)priutalate	Arochlor 1260
benzene	a data	1,2,4 - Trimetryipenzene	Englin	Aldeia
arbon tetrachi	onde	1,3 - Dichloropropane	Heptachior	Aldrin
hlorobenzene		1,3,5 - Trimethylbenzene	Heptachlor epoxide	Butachlor
is - 1,2 - Dichle	oroethylene	2,2 - Dichloropropane	Hexachlorobenzene	Dieldrin
Methylene chlo	ride	Bromobenzene	Hexachloro-cyclopentadiene	Metolachlor
Ethylbenzene		Bromochloromethane	Lindane	Metribuzin
,4 - Dichlorobe	enzene	Bromoform	Methoxychlor	Propachlor
,2 - Dichlorobe	enzene	Bromomethane	Pentachlorophenol	Bromacil
Styrene		Chlorodibromomethane	Polychlorinated biphenyls (PCBs)	Terbacil
etrachloroethy	/lene	Chloroethane	Simazine	Diazinon
Foluene		Chloromethane	Toxaphene	EPTC
rans - 1,2 - Dic	hloroethylene	cis 1,3 - Dichloropropene	RADIONUCLIDES #	4,4 – DDD
richloroethyler	ne (TCE)	Dibromomethane	Gross Alpha	4 4 - DDE
/invl Chloride		Dichlorodifluoromethane	Gross Beta	4 4 - DDT
(vlenes (total)		Hexachlorobutadiene	Radium 228	Malathian
vulopo		leopropulsopzopo	Reduin 220	Derethion
		m Disblombonzono		Triffuralin
n/p xylenes	-	m-Dichlorobenzene		
,2 -Dibromo - 3	- cnioropropane	n - Butyipenzene		PAHS (14)
thylene dibron	nide	n - Propylbenzene		Phthalates(4)
INORGA	NICS @	Naphthalene		Cyanazine
Antimony	Nickel	o-Chlorotoluene		
Asbestos	Nitrite	p - Isopropyltoluene		
Beryllium	Silver	p-Chlorotoluene		UNREGULATED
Cyanide	Cadmium	sec - Butylbenzene		CONTAMINANT
Vercury	Thallium	tert - Butylbenzene		MONITORING **
		trans 1.3 - Dichloropropene		2.4-dinitrotoluene
		Trichlorofluoromethane		2,6-dinitrotoluene
Pharmaceut	icals/PCPs^	Synthetic Organ	ics – Extended List*	Acetochlor
Sulfadimethoxir	ne	Carboxin	Diphenamide	DCPA di-acid degradate
Sulfamethazine		Tebuthiuron	Endosulfan I	DCPA mono-acid degradate
Sulfamethoxaz	ole	Ametryn	Endosulfan II	Molinate
Sulfathiazole		Atraton	Endosulfan Sulfate	MTBE (8/27/2007)
incomvein		BHC Alpha	Endrin Aldehyde	Nitrobenzene
Incomycin		BHC Beta	Ethonron	Derchlorate
ylosin		RHC Delta	Etridiazala	Total DCDA degradates
Carbamazepine		DHC, Delta		1 O diabaaudhudaaria
rimethoprim		Chlordono Alaba	Fenamiphos	1,∠-aipnenyinyarazine
Acetaminophen		Chiordane, Alpha	renarimol	2-meunyipnenoi
buprofen		Chiordane, Gamma	Fluridone	2,4-dichlorophenol
Cotinine, Nicotine metabolite		Chlordane, Trans-nonachlor	Hexazinone	2,4-dinitrophenol
Caffeine		Chlorobenzilate	Mevinphos Propazine	2,4,6-trichlorophenol
DEET		Chloroneb	MGK-264 Simetryn	Alachlor ESA
Triclosan C		Chlorothalonil	Napropamide Stirofos	Disulfoton
Bisphenol A		Chlorpropham	Norflurazon Terbutryn	Diuron
-		Chlorpyrifos	Pebulate Triadimefon	Fonofos
Conducted 2008)		Cycloate	Prometryn Tricvclazole	Linuron
,		Dacthal	Pronamide Vernolate	Terbufos
		Dichloryos	Permethrin Cis- and Trans-	Prometon

\$\$ Monitoring conducted May 24, 2011 (Cedar) and September 15, 2015 (Tolt).

Monitoring conducted October 22, 2015.

Monitoring conducted May 13, 2014, except Asbestos, which was Sept. 1, 2009. Q

% Monitoring conducted December 11, 2013.

Monitoring conducted September and December 2002.

UCMR 2 Contaminants

	Analytes not detected:
Dimet	hoate
Terbu	fos sulfone
Flame	e Retardants
2,2',4	,4'-tetrabromodiphenyl ether (BDE-47)
2,2',4	,4',5-pentabromodiphenyl ether (BDE-99)
2,2',4	,4',5,5'-hexabromobiphenyl (HBB)
2,2',4	,4',5,5'-hexabromodiphenyl ether (BDE-153)
2,2',4	,4',6-pentabromodiphenyl ether (BDE-100)
Explo	sives
1,3-di	nitrobenzene
2,4,6-	trinitrotoluene (TNT)
Hexah	ydro-1,3,5-trinitro-1,3,5-triazine (RDX)
Parer	nt Acetanilides
Aceto	chlor
Alachl	or
Metola	achlor
Aceta	nilide Degradates
Aceto	chlor ethane sulfonic acid (ESA)
Aceto	chlor oxanilic acid (OA)
Alachl	or ethane sulfonic acid (ESA)
Alachl	or oxanilic acid (OA)
Metola	achlor ethane sulfonic acid (ESA)
Metola	achlor oxanilic acid (OA)
Nitro	samines
N-nitr	oso-diethylamine (NDEA)
N-nitr	oso-dimethylamine (NDMA)
N-nitr	oso-di-n-butylamine (NDBA)
N-nitr	oso-di-n-propylamine (NDPA)
N-nitr	oso-methylethylamine (NMEA)
N-nitr	oso-pyrrolidine (NPYR)

UCMR 3 Contaminants

Analytes not detected:				
1,2,3-trichloropropane	17-β-estradiol			
chlorodifluoromethane (HCFC- 22)	17-α-ethynylestradiol			
bromomethane (methyl bromide)	estriol			
chloromethane (methyl chloride)	equilin			
bromochloromethane (Halon 1011)	estrone			
1,3-butadiene	testosterone			
1,1-dichloroethane	4-androstene-3,17-dione			
1,4-dioxane	molybdenum			
perfluorooctanoic acid (PFOA)	cobalt			
perfluorononanoic acid (PFNA)				
perfluorobutanesulfonic acid (PFBS)				
perfluorohexanesulfonic acid (PFHxS)				
perfluoroheptanoic acid (PFHpA)				
perfluorooctanesulfonic acid (PFOS)				

Annual Water Quality Report

- Also known as the Consumer Confidence Report
- Regulatory requirement
 - Must be mailed to customers by the end of July
 - Covers previous calendar year
- Much of the data and language must be used verbatim
- Flexibility in format, font, color and additional narrative

Questions?