SDOT Urban Forestry's Preventative Respondent Measures to Potential Tree Pests

FOR EVERY BODY

KAISER PERMANENTE thrive

2308

2019 City of Seattle Pesticide License Recertification Seminar Sherry Graham and Stephanie Helms 10/30/2019 Department of Transportation

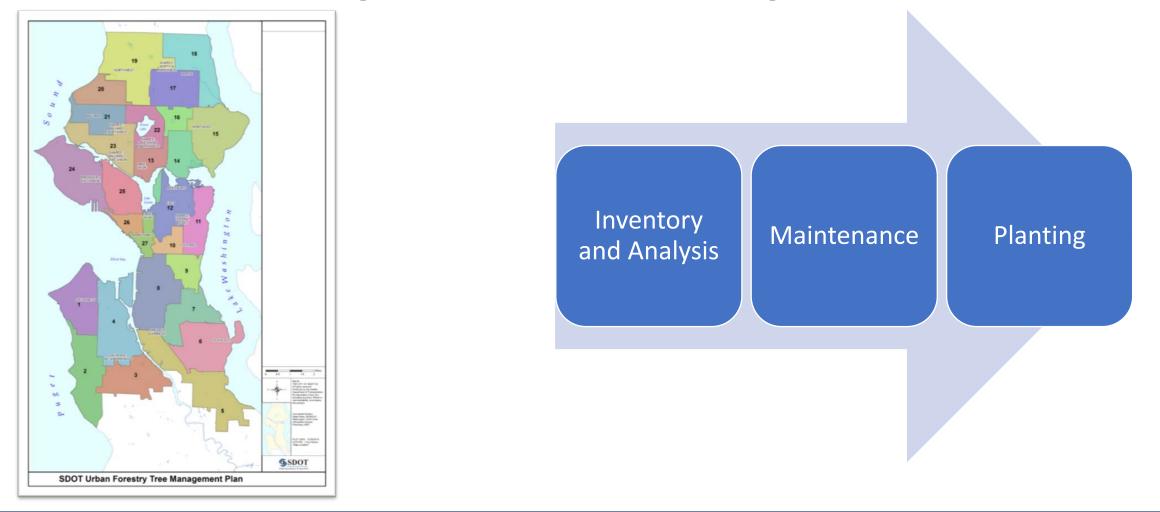
Our vision, mission, and core values

Vision: Seattle is a thriving equitable community powered by dependable transportation

Mission: to deliver a transportation system that provides safe and affordable access to places and opportunities

Committed to 6 core values:

- Equity
- Safety
- Mobility
- Sustainability
- Livability
- Excellence



Presentation overview

- Overview of SDOT Management Plan
- Most common Seattle tree pests
- The importance of species diversity
- SDOT active response
- The Urban Forest Pest Readiness Playbook

SDOT Management Units-atglance

9-year Street Tree Management Plan

- Simple to communicate and easy to understand
- Data-driven approach
- Expands the use of best management practices
- Clear performance measures

Most common Seattle tree pests Dutch Elm Disease (DED)

Simplified...

- Spread by bark beetles, via fungal spores, from tree to tree
- Spores in the feeding site eventually grow in the xylem
- Eventual spread of spores throughout tree and full vascular disruption

Pacific Northwest Pest Management Handbook

Photos courtesy of Nolan Rundquist

Most common Seattle tree pests Bronze Birch Borer

Becoming more common in Seattle. Betula is main host here in Seattle but can affect Fagus.

- Larvae hatch from eggs laid on surface
- Bore into branches and trunk
- Feed on cambium (transport system)
- Disruption eventually kills the tree

Oregon State Extension "Homeowner Guide to Managing Bronze Birch Borer"

Adult bronze birch borer

Photos courtesy of Nolan Rundquist

Most common Seattle tree pests Aphids

Common on lindens and maples... lots of trees in Seattle

- Overwinter in the egg stage and hatch early in the spring.
- Later in the spring, live in colonies on the most succulent plant tissues.
- Can compromise the vigor of the host.
- Leaf and shoot distortion can occur.
- Produces honeydew, that encourages black sooty mold and becomes a sticky nuisance on decks, cars, and any underlying surface.

Green peach aphid feeding on leaf. Note the mouthparts. M. R. Bush, WA State University

Pacific Northwest Pest Management Handbooks

Most common Seattle tree pests Powdery Mildew

Common on dogwood, serviceberry, cherry, crabapple, maple

- A fungi requiring a live host to grow and reproduce.
- We see the white dusty appearance of vegetative structures and spores.
- Underneath the leaf is penetrated where the host is intercepting nutrients
- Compromises vigor and can result in defoliation and cosmetic damage.
- Pacific Northwest Pest Management Handbooks

Powdery mildew on dogwood. Photo by Robin Rosetta, 2006. PNW Pest Management Handbooks

Most common Seattle tree pests Anthracnose

Common on dogwood, London Planetree, Maple

- In spring, fungus in diseased tissue produces spores, which spread by rain or wind to cause new infections.
- In spring as leaves expand, they turn brown as they emerge from buds.
- Blotches enlarge and grow together ultimately covering much of the leaf surface.
- If severe, infected leaves fall and the entire tree can be defoliated except for terminal leaves, creating the "witches broom" effect.
- The disease is more severe in wet springs

Pacific Northwest Pest Management Handbooks

Necrosis following the leaf vein. Photo by Jay Pscheidt, PNW Pest Management Handbooks

Importance of Species Diversity as an IPM tool

- Overall lack of capacity for implementing treatments
- Create buffers
- Give us a chance at providing good cultural care
- Avoid large scale canopy loss
- Increase overall resilience through genetic diversity

A row of Ash stumps, cut to manage EAB. Minneapolis St. Paul Star Tribune. Faiza Mahamud and James Walsh. May 9, 2017.

Data-driven approach

- Base tree planting decisions on street tree inventory
- For each management unit, we know which species to avoid
- Additionally, we can make species placement decisions at the neighborhood or street level
- Please refer to your hand out

Management Unit 27

Inventory analysis before a	nd	after	2018 in	ventory update
(Inventory is 100% complete at time of	repo	ort)		
Initial number of inventoried trees (Jan 1, 2016)			2,746	5
Current number of inventoried trees (July 10, 2018)) 3,608	3
Average diameter of tree in mgmt unit	is 9"	' inches		
Trees removed during inventory updat	e		484	(17% of initial count)
Average diameter of trees removed wa				
Trees updated – 2,262 Trees added	- 1,3	46		
Trees added to initial inventory			862	
Percent of increase			32	*
Annual benefits – initial inventory			\$ 527	7,592.00
Energy	\$	12,114	ŧ.	
CO2		1,793		
Air Quality		3,376		
Stormwater	\$	45,013		
Aesthetic	\$	465,29	7	
Annual benefits – final inventory			\$ 754	1,508.00
Energy	\$	18,422	2	
CO2	\$	2,584	4	
Air Quality	\$	5,090	D	
Stormwater	\$	66,865	;	
Aesthetic	\$	661,547	7	
Percent of increase in annual benefits			43%	
Tree Population – initial inventory				
Small trees	18	83		
Medium trees	178	83		
Large trees	65	99		
Broadleaf evergreen, large	1	16		
Broadleaf evergreen, medium		3		
Large conifer		11		
Small/Medium conifer	4/:	11		
Tree Population – final inventory				
Small trees	2	219	(182 with	n no overhead wires = 83 %
Medium trees	2,2	276		
Large trees	1	924		
Broadleaf evergreen, large		56		
Broadleaf evergreen, small/me	d	15		
Large conifer		34		
Small/Medium conifer		59		

Moratorium on planting

- Acer
- Fraxinus
- Prunus
- Malus
- Crataegus
- Tilia
- Platanus
- Liquidambar

How Seattle is Forming an Invasive Pest Response

Utilizing the new State of Washington Urban Forest Pest Readiness Playbook

10/30/2019 Department of Transportation

Urban Forest Pest Readiness Playbook

- Farm Bill funding through US Dept of Agriculture Animal and Plant Health Inspection Service (APHIS) Plant Protection and Quarantine
- Funding provided to Washington Invasive Species Council
- Administratively hosted by Washington State Recreation and Conservation Office
- RCO has interlocal agreement with DNR for their involvement
- Playbook and self assessment for Washington state communities

How do we score?

- Not as well as we would like!
- Past efforts, limited response
- Most current resiliency from inventory data, diversifying plantings
- Goal of city-wide, coordinated interdepartmental response

Our Invasive Pest Steering Committee

- SDOT, SPU, Parks, SCL, and beyond
- Current strengths and areas of improvement
- Identifying priority pests and vulnerable trees
- Risk assessments & GIS analysis
- Creating interdepartmental communication pathways
- Forming partnerships tree services & stakeholders

Partners & Stakeholders

- We need you!
- Future trainings
- Email for future updates: <u>Stephanie.Helms@seattle.gov</u>
- Stay tuned!

Sherry.Graham@seattle.gov | (206) 615-1569 Stephanie.Helms@seattle.gov | (206) 684-7997 www.seattle.gov/transportation/

www.seattle.gov/transportation

10/30/2019 Department of Transportation 19