

STRUCTURAL CALCULATIONS

Talarico's Pizzeria Covered Dining

4718 California Ave SW Seattle, WA 98116

03/10/2021

250 4th Ave S Ste 200 Edmonds, WA 98020 Phone: (425) 778-8500 Fax: (425) 778-5536

CG Project No.: 21133.10

Project Location

4718 California Ave SW Seattle, WA 98116

Project Description

A covered outdoor dining area has been built for an existing restaurant. The covered area is approximately 6 x 50ft. The covered area has minimal lateral resistance and will be designed as a temporary structural for gravity loads only.

Scope of Work

Provide structural calculations in accordance with current building code.

Basis of Design

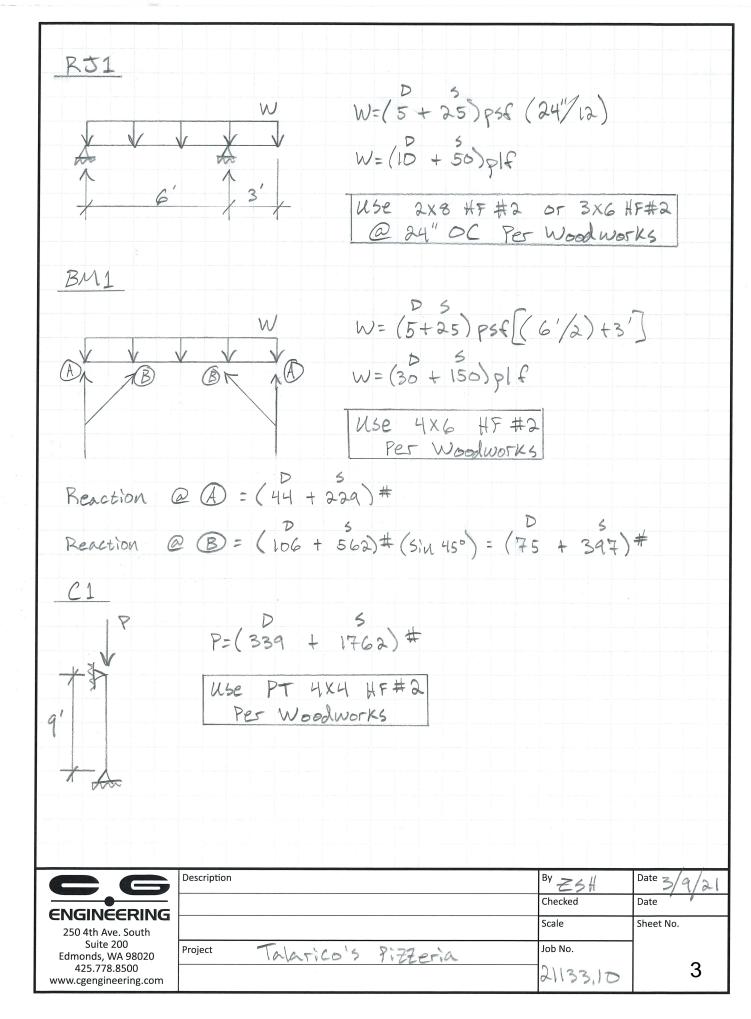
Loads Dead 5 psf

Snow 25 psf (snow)

ENGINEERING	Descrip
250 4th Ave South Suite 200 Edmonds, WA 98020	Project

Description	Drainet Curamany	By ZSH Checked	Date 3/5/2021 Date
	Project Summary	Scale NTS	Sheet No.
Project	Talarico's Pizzeria	Job No. 21133.10	1

Gravity Design Loads


Roof DL

Roofing Material	0.3	psf	
2x8 @ 24" OC	1.5	psf	
Misc	1.5	psf	
	3.3	psf	
USE	5.0	psf	

Roof LL (Snow)	25.0	psf	

ENGINĚERING
250 4th Ave. South Suite 200 Edmonds, WA 98020

Description	Gravity Design Loads	^{By} ZSH	Date 03/05/21
		Checked	Date
		Scale	Sheet No.
Project	Talarico's Pizzeria	Job No.	2
		21133.10]

PROJECT

Mar. 10, 2021 08:39

Roof Joist1

1.25

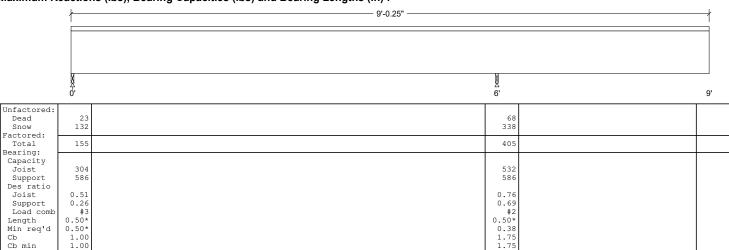
Design Check Calculation Sheet

WoodWorks Sizer 2019 (Update 1)

Loads:

Dead Snow

Total


Joist

Cb support

1.25

ı	Load	Type	Distribution	Pat-	Location [ft]		Magnitude		Unit
ı				tern	Start	End	Start I	∃nd	
ı	Load1	Dead	Full Area	No			5.00(24.0	")	psf
ı	Load2	Snow	Full Area	Yes			25.00(24.0	")	psf

Maximum Reactions (lbs), Bearing Capacities (lbs) and Bearing Lengths (in):

cp sup *Minimum bearing length setting used: 1/2" for end supports and 1/2" for interior supports

RJ1

Lumber-soft, Hem-Fir, No.2, 2x8 (1-1/2"x7-1/4")

Supports: All - Timber-soft Beam, D.Fir-L No.2

Roof joist spaced at 24.0" c/c; Total length: 9'-0.25"; Clear span: 5'-11.5"; Volume = 0.7 cu.ft. Lateral support: top = continuous, bottom = at supports; Repetitive factor: applied where permitted (refer to online help); This section PASSES the design code check.

Analysis vs. Allowable Stress and Deflection using NDS 2018:

Criterion	Analysis Value	Design Value	Unit	Analysis/Design		
Shear	fv = 26	Fv' = 172	psi	fv/Fv' = 0.15		
Bending(+)	fb = 180	Fb' = 1349	psi	fb/Fb' = 0.13		
Bending(-)	fb = 247	Fb' = 1121	psi	fb/Fb' = 0.22		
Deflection:						
Interior Live	0.02 = < L/999	0.30 = L/240	in	0.06		
Total	0.02 = < L/999	0.40 = L/180	in	0.05		
Cantil. Live	0.03 = < L/999	0.30 = L/120	in	0.11		
Total	0.04 = < T./999	$0.40 = T_1/90$	in	0.09		

Additional Data:

FACTORS:	F/E(psi) CL	CM	Ct	CL	CF.	Ciu	Cr	Cirt	Cı	Cn	LC#
Fv'	150 1.1	5 1.00	1.00	-	-	-	-	1.00	1.00	1.00	2
Fb'+	850 1.1	5 1.00	1.00	1.000	1.200	-	1.15	1.00	1.00	-	3
Fb'-	850 1.1	5 1.00	1.00	0.831	1.200	-	1.15	1.00	1.00	-	2
Fcp'	405 -	1.00	1.00	-	-	-	-	1.00	1.00	-	_
E'	1.3 millio	n 1.00	1.00	-	-	-	-	1.00	1.00	-	4
Emin'	0.47 millio	n 1.00	1.00	-	-	-	-	1.00	1.00	-	4
Emin'											

CRITICAL LOAD COMBINATIONS:

CHITICAL LUAD COMBINATIONS:

Shear : LC #2 = D+S

Bending(+): LC #3 = D+S (pattern: Ss)

Bending(-): LC #4 = D+S

Deflection: LC #4 = (live)

LC #4 = (total)

Bearing : Support 1 - LC #3 = D+S (pattern: Ss)

Support 2 - LC #2 = D+S

Dedead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake

D=Gedd L-17ve S-SiNow w-white 1-impact in-17of 17ve 18ve concentrated 2 of All LC's are listed in the Analysis output Load Patterns: s=S/2, X=L+S or L+Lr, _=no pattern load in this span Load combinations: ASD Basic from ASCE 7-16 2.4 / IBC 2018 1605.3.2

CALCULATIONS: V max = 225, V design = 188 lbs; M(+) = 197 lbs-ft; M(-) = 270 lbs-ft EI = 61.92e06 lb-in^2
"Live" deflection is due to all non-dead loads (live, wind, snow...)

Total deflection = 1.0 dead + "live"
Lateral stability(-): Lu = 6' Le = 10'-5.44" RB = 20.1; Lu based on full span

- 1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2018), the National Design Specification (NDS 2018), and NDS Design Supplement.
- 2. Please verify that the default deflection limits are appropriate for your application.
- 3. Continuous or Cantilevered Beams: NDS Clause 4.2.5.5 requires that normal grading provisions be extended to the middle 2/3 of 2 span beams and to the full length of cantilevers and other spans.
- 4. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1.

PROJECT

Mar. 9, 2021 16:26

Roof Joist1'

1.15

Design Check Calculation Sheet

WoodWorks Sizer 2019 (Update 1)

Loads:

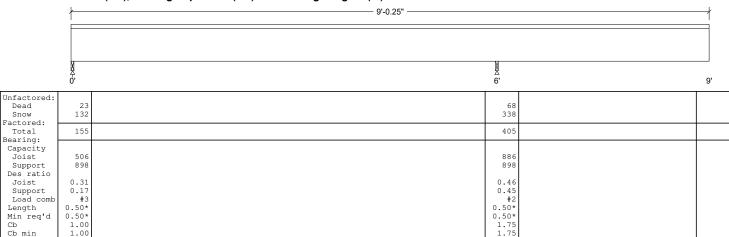
Snow

Factored:

Total Rearing. Capacity Joist

Support

Joist Support


Length

1.15

Cb Cb min Cb support

Load	Type	Distribution	Pat-	Location [ft]		Magnitud	.e	Unit
			tern	Start	End	Start	End	
Load1	Dead	Full Area	No			5.00(24.	0")	psf
Load2	Snow	Full Area	Yes			25.00(24.	0")	psf

Maximum Reactions (lbs), Bearing Capacities (lbs) and Bearing Lengths (in):

cp sup *Minimum bearing length setting used: 1/2" for end supports and 1/2" for interior supports

RJ1

Lumber-soft, Hem-Fir, No.2, 3x6 (2-1/2"x5-1/2")

Supports: All - Timber-soft Beam, D.Fir-L No.2

Roof joist spaced at 24.0" c/c; Total length: 9'-0.25"; Clear span: 5'-11.5", 2'-11.75"; Volume = 0.9 cu.ft. Lateral support: top = continuous, bottom = at supports; Repetitive factor: applied where permitted (refer to online help);

This section PASSES the design code check.

Analysis vs. Allowable Stress and Deflection using NDS 2018:

Criterion	Analysis Value	Design Value	Unit	Analysis/Design
Shear	fv = 21	Fv' = 172	psi	fv/Fv' = 0.12
Bending(+)	fb = 188	Fb' = 1461	psi	fb/Fb' = 0.13
Bending(-)	fb = 257	Fb' = 1435	psi	fb/Fb' = 0.18
Deflection:				
Interior Live	0.02 = < L/999	0.30 = L/240	in	0.08
Total	0.03 = < L/999	0.40 = L/180	in	0.06
Cantil. Live	0.05 = L/794	0.30 = L/120	in	0.15
Total	0.05 = L/731	0.40 = L/90	in	0.12

Additional Data:

FACTORS:	F/E(ps	i) CD	CM	Ct	CL	CF	Cfu	Cr	Cfrt	Ci	Cn	LC#
Fv'	150	1.15	1.00	1.00	-	-	-	-	1.00	1.00	1.00	2
Fb'+	850	1.15	1.00	1.00	1.000	1.300	-	1.15	1.00	1.00	-	3
Fb'-	850	1.15	1.00	1.00	0.982	1.300	-	1.15	1.00	1.00	-	2
Fcp'	405	-	1.00	1.00	-	-	-	-	1.00	1.00	-	-
E'	1.3 m	illion	1.00	1.00	-	-	-	-	1.00	1.00	-	4
Emin'	0.47 m	illion	1.00	1.00	_	-	-	-	1.00	1.00	-	4

CRITICAL LOAD COMBINATIONS:

CRITICAL LOAD COMBINATIONS:
Shear : LC #2 = D+S
Bending(+): LC #3 = D+S (pattern: Ss)
Bending(-): LC #4 = D+S
Deflection: LC #4 = (live)
LC #4 = (total)
Bearing : Support 1 - LC #3 = D+S (pattern: Ss)
Support 2 - LC #2 = D+S
Dedead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake
All LC's are listed in the Analysis output
Load Patterns: s=5/2, X=L+S or L+Lr, _=no pattern load in this span
Load combinations: ASD Basic from ASCE 7-16 2.4 / IBC 2018 1605.3.2

CALCULATIONS: ASD Basic from ASCE 7-16 2.4 / 1BC 2018 1805.3.2 CALCULATIONS:

V max = 225, V design = 196 lbs; M(+) = 197 lbs-ft; M(-) = 270 lbs-ft

EI = 45.06e06 lb-in^2

"Live" deflection is due to all non-dead loads (live, wind, snow...)

Total deflection = 1.0 dead + "live"

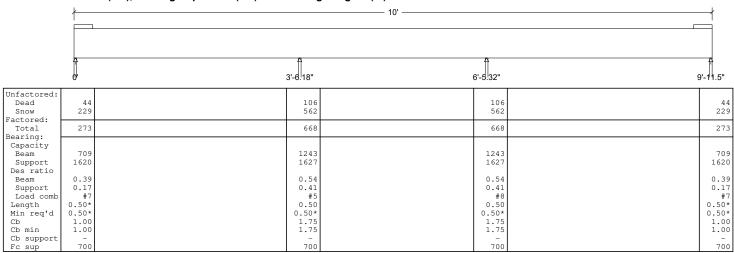
Lateral stability(-): Lu = 6' Le = 10'-0.19" RB = 10.3; Lu based on full span

- 1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2018), the National Design Specification (NDS 2018), and NDS Design Supplement.
- 2. Please verify that the default deflection limits are appropriate for your application.
- 3. Continuous or Cantilevered Beams: NDS Clause 4.2.5.5 requires that normal grading provisions be extended to the middle 2/3 of 2 span beams and to the full length of cantilevers and other spans.
- 4. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1.

PROJECT

Mar. 10, 2021 08:38

Beam1 - High Side


Design Check Calculation Sheet

WoodWorks Sizer 2019 (Update 1)

Loads:

Load	Type	Distribution	Pat-	Location	[ft]	Magnitude		Unit
			tern	Start	End	Start	End	
Load3	Dead	Full Area	No			5.00(6.0	00')	psf
Load4	Snow	Full Area	Yes			25.00(6.0	00')	psf

Maximum Reactions (lbs), Bearing Capacities (lbs) and Bearing Lengths (in):

^{*}Minimum bearing length setting used: 1/2" for end supports

BM1 - High Side

Lumber-soft, Hem-Fir, No.2, 4x6 (3-1/2"x5-1/2")

Supports: All - Timber-soft Column, D.Fir-L No.2

Total length: 10'; Clear span: 3'-5.68", 2'-10.65", 3'-5.68"; Volume = 1.3 cu.ft. Lateral support: top = at end supports, bottom = at end supports;

This section PASSES the design code check.

Analysis vs. Allowable Stress and Deflection using NDS 2018:

Criterion	Analysis Value	Design Value	Unit	Analysis/Design
Shear	fv = 23	Fv' = 172	psi	fv/Fv' = 0.13
Bending(+)	fb = 137	Fb' = 1271	psi	fb/Fb' = 0.11
Bending(-)	fb = 143	Fb' = 1271	psi	fb/Fb' = 0.11
Live Defl'n	0.01 = < L/999	0.12 = L/360	in	0.05
Total Defl'n	0.01 = < L/999	0.18 = L/240	in	0.04

Additional Data:

FACTORS:	F/E(ps	i) CD	CM	Ct	CL	CF	Cfu	Cr	Cfrt	Ci	Cn	LC#
Fv'	150	1.15	1.00	1.00	-	-	-	-	1.00	1.00	1.00	5
Fb'+	850	1.15	1.00	1.00	1.000	1.300	-	1.00	1.00	1.00	-	7
Fb'-	850	1.15	1.00	1.00	1.000	1.300	-	1.00	1.00	1.00	-	5
Fcp'	405	-	1.00	1.00	-	-	-	-	1.00	1.00	-	-
E.	1 3 m	illion	1 00	1 00	_	_	-	_	1 00	1 00	_	7

CRITICAL LOAD COMBINATIONS:

LC #7 = (total)

Bearing : Support 1 - LC #7 = D+S (pattern: SSS)

Support 2 - LC #5 = D+S (pattern: SSS)

Support 3 - LC #8 = D+S (pattern: SSS)

Support 4 - LC #7 = D+S (pattern: SSS)

D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake

All LC's are listed in the Analysis output

Load Patterns: s=S/2, X=L+S or L+Lr, _=no pattern load in this span

Load Patterns: s=S/2, X=L+S or L+Lr, _=no pattern load in this span Load combinations: ASD Basic from ASCE 7-16 2.4 / IBC 2018 1605.3.2

CALCULATIONS:

V max = 376, V design = 290 lbs; M(+) = 201 lbs-ft; M(-) = 210 lbs-ft EI = 63.08e06 lb-in^2

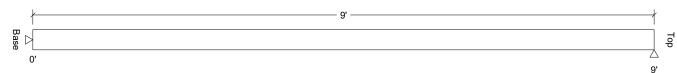
"Live" deflection is due to all non-dead loads (live, wind, snow...) Total deflection = 1.0 dead + "live" $\,$

- 1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2018), the National Design Specification (NDS 2018), and NDS Design Supplement.
- 2. Please verify that the default deflection limits are appropriate for your application.
 3. Continuous or Cantilevered Beams; NDS Clause 4.2.5.5 requires that normal grading provisions be extended to the middle 2/3 of 2 span beams and to the full length of cantilevers and other spans.
- 4. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1

PROJECT

Mar. 10. 2021 08:38

Column1


Design Check Calculation Sheet

WoodWorks Sizer 2019 (Update 1)

Loads:

Load	Type	Distribution	Locatio	n [ft]	Magnitud	Magnitude	
			Start	End	Start	End	
Load1	Dead	Axial	(Ecc. =	0.58")	339		lbs
Load2	Snow	Axial	(Ecc. =	0.58")	1762		lbs l

Reactions (lbs):

Unfactored:		
Lateral:		
Dead	2	-
Snow	10	-1
Axial:		
Dead	339	33
Snow	1762	176
Factored:		
R->L		-1
Load comb		#
L->R	11	
Load comb	#2	#

C1

Lumber Post, Hem-Fir, No.2, 4x4 (3-1/2"x3-1/2")

Support: Non-wood Total length: 9'; Volume = 0.8 cu.ft.

Pinned base; Load face = width(b); Wet service; Incised; Ke x Lb: 1.0 x 9.0 = 9.0 ft; Ke x Ld: 1.0 x 9.0 = 9.0 ft; This section PASSES the design code check.

Analysis vs. Allowable Stress and Deflection using NDS 2018:

Criterion	Analysis Value	Design Value	Unit	Analysis/Design
Shear	fv = 1	Fv' = 134	psi	fv/Fv' = 0.01
Bending(+)	fb = 172	Fb' = 997	psi	fb/Fb' = 0.17
Axial	fc = 172	Fc' = 274	psi	fc/Fc' = 0.63
Combined	(axial + eccentr:	c moment)		Eq.15.4-3 = 0.87
Axial Bearing	fc = 172	Fc* = 1100	psi	fc/Fc* = 0.16
Live Defl'n	0.06 = < L/999	0.60 = L/180	in	0.09
Total Defl'n	0.07 = < L/999	0.60 = L/180	in	0.11

Additional Data:

FACTORS:	F/E(ps:	i) CD	CM	Ct	CL/CP	CF	Cfu	Cr	Cfrt	Ci	LC#
Fv'	150	1.15	0.97	1.00	-	-	-	-	1.00	0.80	2
Fb'+	850	1.15	0.85	1.00	1.000	1.500	-	1.00	1.00	0.80	2
Fc'	1300	1.15	0.80	1.00	0.249	1.150	-	-	1.00	0.80	2
E'	1.3 m	illion	0.90	1.00	-	-	-	-	1.00	0.95	2
Emin'	0.47 m	illion	0.90	1.00	-	-	-	-	1.00	0.95	2
Fc*	1300	1.15	0.80	1.00	_	1.150	_	_	1.00	0.80	2

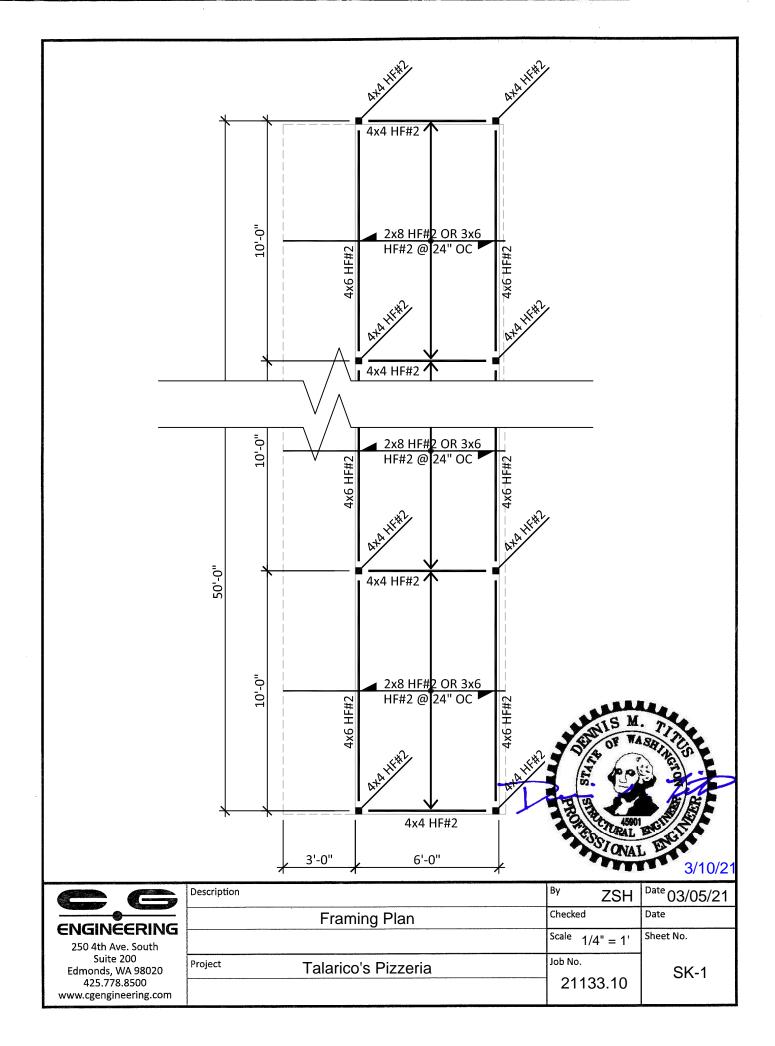
CRITICAL LOAD COMBINATIONS:

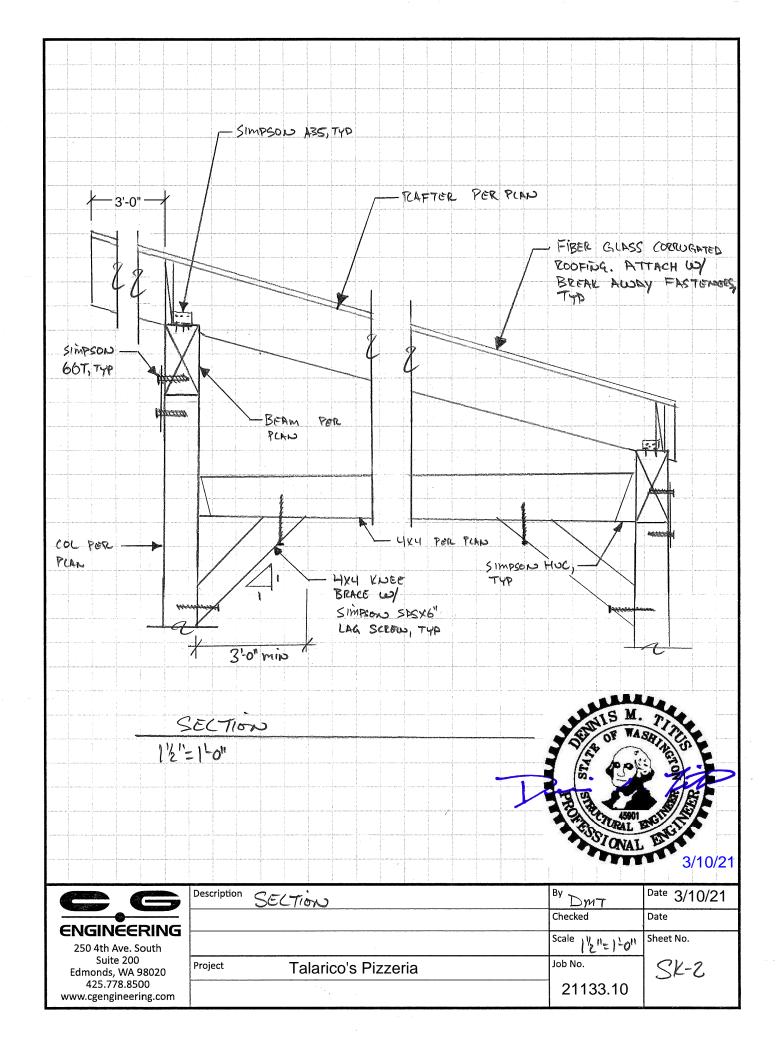
Shear : LC #2 = D+S Bending(+): LC #2 = D+S

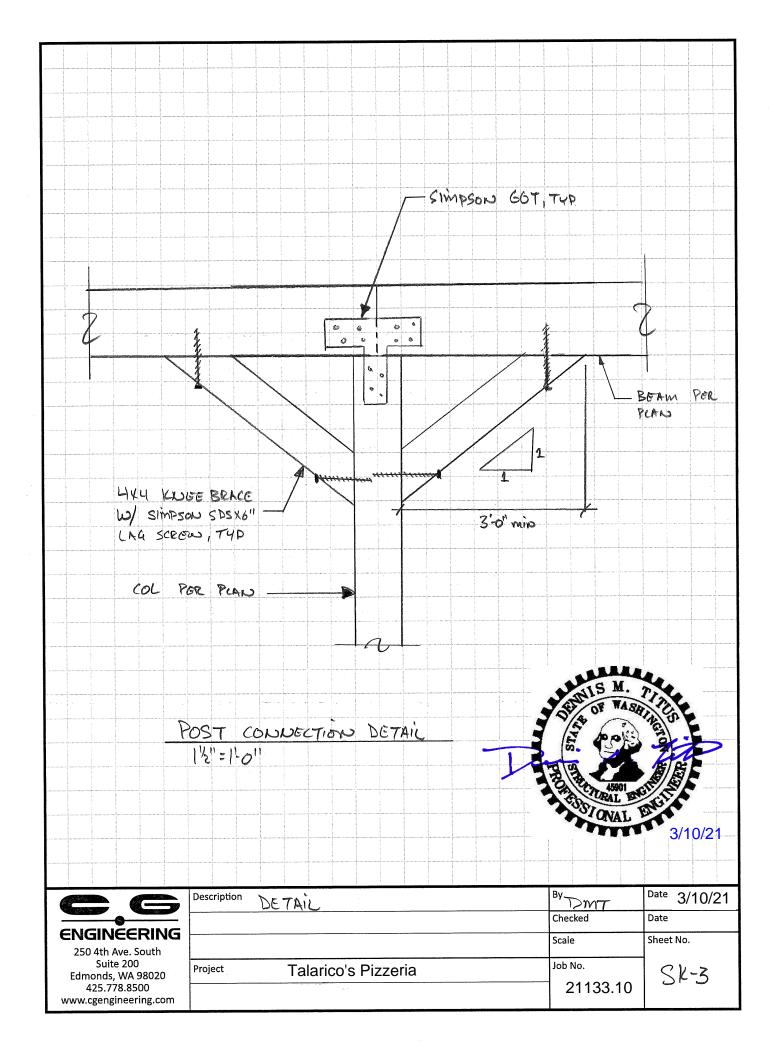
Deflection: LC #2 = D+S (live) LC #2 = D+S(total)

: LC #2 = D+S Combined : LC #2 = D+S Fb'= 997

FcE= 292 Pxe/S=fc(6xe/d)=172


D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ASD Basic from ASCE 7-16 2.4 / IBC 2018 1605.3.2


CALCULATIONS:


V = 11 lbs; M(+) = 102 lbs-ft; P = 2101 lbs

EI = 16.26e06 lb-in^2
"Live" deflection is due to all non-dead loads (live, wind, snow...)
Total deflection = 1.0 dead + "live"

- 1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2018), the National Design Specification (NDS 2018), and NDS Design Supplement.
- 2. Please verify that the default deflection limits are appropriate for your application.
- 3. Axial load eccentricity applied in direction of load face only. It is the designers responsibility to check for effect of eccentricity in the other direction.

