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Abstract 

Mountain goats (Oreamnos americanus) are not native to the Olympic Peninsula as they are 

to other regions of Washington State.  A total of eleven or twelve animals were translocated 

from Alaska and British Columbia between 1925 and 1929 then released in the foothills of 

Mount Storm King.  By 1970 these founding goats had colonized the entire Olympic range 

and concerns about the management of this introduced species developed as damage to 

alpine soil and vegetation was noted.  An aerial census of the Olympic range conducted in 

July 1983 estimated the mountain goat population at 1,175 (95% CI 840 – 1510).  A series of 

removals reduced the population to 389 (95% CI 181 – 597) goats by 1990, with a period of 

stasis occurring during the following decade.  The most recent two aerial surveys (2011 and 

2016) indicate positive growth, and a variety of efforts to mitigate damage to fragile alpine 

ecosystems are again under consideration.   

 I parameterized an existing population model, CDPOP, for use with mountain goats. 

CDPOP is a simulation program that uses individual-based movement (including dispersal), 

reproduction, and mortality to predict the influence of landscape heterogeneity on population 

dynamics and genetic exchange.  Population parameters for the model were derived from 

published literature.  I successfully calibrated the model and simulated the population 

trajectory for Olympic mountain goats from establishment through the 1983 census.  

Modeled population dispersal closely tracked anecdotal reports of dispersal.  However, 

observed heterozygosity for the modeled population did not align with previous research.  I 

suspect genetic diversity for the true founding goats was not as great as that of the individuals 

used to initialize the model.  Sensitivity analyses showed that changes in annual reproductive 

rate had the greatest influence on population trajectories, followed by juvenile mortality and 
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adult female mortality, respectively.  These findings differ from those in two related studies, 

likely due to the early primiparity within the modeled population.  I validated the model by 

simulating the period from 1990 to 2016.  The modeled population showed that 

approximately 75% to 80% of the total animals removed during the 1980’s needed to be 

female in order for the observed population stasis to occur.  Finally, I discuss avenues for 

future model development and applications.  This model could be utilized to inform current 

management decisions regarding the impact of removals from the Olympic mountain goat 

population and proposals to use these animals to augment reduced native populations in the 

Cascade Mountain Range.    
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2.0 Introduction 

Mountain goats (Oreamnos americanus) were introduced to the Olympic Mountains as a 

joint effort of state wildlife agents, United States Forest Service (USFS), and local 

sportsman’s clubs, likely with the intention of establishing a harvestable population on the 

Olympic Peninsula (Hutchins and Stevens 1981).  In 1909 president Theodore Roosevelt 

declared Mount Olympus a national monument under the jurisdiction of USFS in an effort to 

preserve the then declining Roosevelt elk (Cervus elaphus roosevelti ) and their habitat 

(Moorhead and Stevens 1982).  Areas surrounding this new preserve were identified by 

federal and state land managers as suitable habitat for mountain goat.  In 1925, four goats 

were transported from the Selkirk Mountains in British Columbia and released near Lake 

Crescent, at the base of Mount Storm King, in the northwestern corner of the Olympic 

Mountains (Scheffer 1949, Moorhead and Stevens 1982, Johnson 1983).  The sex of these 

goats is unclear with one record referring to them as “two pairs” and another labeling them 

“three nannies and a billy” (Scheffer 1949).   

 Roosevelt elk populations began increasing as a result of the aforementioned 

conservation efforts and state agencies from other areas started requesting elk, inspiring the 

potential for trade.   In 1929 eight young Roosevelt elk were delivered to Afognak Island, 

Alaska in exchange for eight mountain goats who were released in the Olympic Mountains 

near the first release site (Webster 1932, Scheffer 1949, Moorhead and Stevens 1982).  Early 

records for both releases were sparse and, especially in relation to this second introduction, 

contained some contradictory information which is presented in more detail by Moorhead 

and Stevens (1982).  Briefly, some accounts cite 1927 as the second release date while others 

cite 1929 and 1930 (Scheffer 1949).  Six of the goats came from southeast Alaska, likely near 
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Juneau, while the other two were from the Chugach Mountains near Cordova (Scheffer 1949, 

Moorhead and Stevens 1982).  It is unclear whether all eight of these goats were released.  A 

correspondence signed by the Olympic Park Superintendent in 1947 states that one of the 

eight Alaskan animals died during transport (Moorhead and Stevens 1982) while other 

accounts cite the release of all twelve animals (Webster 1932).  At least six of these goats 

were released at the base of Mount Storm King while two were potentially released slightly 

to the west on Baldy Ridge (Scheffer 1949).  Thus, with certainty, we know that eight 

animals were shipped from Alaska, six from southeast Alaska and two from the Chugach 

Mountains, and seven or eight were released near Mount Storm King and Baldy Ridge 

between 1927 and 1930.     

 These founder goats dispersed from the introduction site near Mount Storm King in a 

southeastern direction, traveling approximately two to three kilometers per year, and 

successfully colonized the entire Olympic range by the late 1960’s (Moorhead and Stevens 

1982).  In 1929 mountain goats were reported on Mount Appleton, approximately 13 

kilometers south of the release site (Figure 2-1).  By 1935 goats had dispersed to the eastern 

portion of the range, with sightings on Mount Constance, sixty kilometers southeast of the 

introduction site.  In 1938 Olympic National Park (ONP) was established, encompassing 

most of the Olympic range within its boundaries.  Because hunting is prohibited within 

National Parks, harvesting opportunities intended for the newly introduced goats were now 

virtually eliminated.  Small numbers of goats continued establishing themselves in the 

northern and eastern areas of the park over the next several years.  In 1946 observations were 

reported on Mount Anderson, fifty-three kilometers from the introduction site, indicating 

southwestern movement.  By 1960 mountain goats reached the southern park boundary and 
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were sighted south of this boundary annually thereafter.  The western and central interior 

portions of the Olympic range were slow to be inhabited.  Goats were not reported on Mount 

Olympus, the tallest mountain in the range, until 1952, with sparse sightings until the early 

1960’s.  Mount Ferry, located in the central Bailey Range near Mount Olympus, had no 

documented sightings until 1968.  Moorhead and Stevens (1982) theorized this relatively late 

colonization was a result of deep and persistent snowpack characterizing the area, with the 

peak of Mount Olympus receiving an average of greater than 15 meters of snow annually 

(Davey et al. 2006).  Dispersal into this final portion of the range marked complete 

colonization of the Olympic Mountains.   

 Concerns about the management of this introduced species began to develop in the 

late 1970’s as damage to alpine soil and vegetation was noted.  Mountain goats are generalist 

herbivores, consuming grasses, sedges, forbes, shrubs, and deciduous or coniferous trees 

(Stevens 1983, Fox et al. 1989, Côté and Festa-Bianchet 2003).  Chadwick (1974) identified 

163 forage species utilized by goats.  Often more deleterious than grazing, trampling and 

digging can also negatively impact fragile alpine vegetation and soil. Mountain goats 

repeatedly utilize the same preferred areas for activities such as bedding or mating 

(Chadwick 1977), trampling vegetation and creating large wallow and rutting pits of bare, 

eroded ground (Rideout and Hoffmann 1975, Chadwick 1977, Hutchins and Stevens 1981).  

Studies by Pfitsch (1985) and Schreiner and Woodward (1994) demonstrated the “direct and 

indirect impacts” ONP goats have on the vegetation including reduced cover and disruption 

of competitive relationships between species.  As a result of long-term geographic isolation, 

the diverse Olympic biota includes a number of endemic plants and animals.  Of eight total 
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endemic plant taxa, the distribution of seven overlap with mountain goat summer range 

(Schreiner and Woodward 1994) making them particularly vulnerable to these impacts. 

 While mountain goats are noted for their heightened sensitivity to anthropogenic 

disturbance in comparison to other ungulates (Lentfer 1955, Chadwick 1974, Festa-Bianchet 

and Cote 2008), they seem to habituate to human presence over time, perhaps in part due to 

access to desired nutrients gained by these interactions.  Alpine forage is low in sodium, a 

beneficial mineral of particular importance to females during lactation (Ayotte et al. 2006), 

and the concentration of nutrients in alpine soil is relatively poor (Slabach et al. 2015).  

Given the great distances goats are willing to travel to access natural licks rich in sodium 

(Brandborg 1955, Singer 1978, Poole et al. 2010, Rice 2010), it is apparent that this mineral 

is a coveted resource.  Human sweat and urine are also sources of sodium and result in the 

attraction of goats to areas accessed regularly by people for outdoor recreation (Stevens 

1983), such as the many trails of Olympic National Park.  Mountain goats will dig up and 

ingest soil containing this sodium, further contributing to the soil erosion and vegetation 

degradation discussed above (Hutchins and Geist 1987).  Additionally, shared use of these 

ONP trails has resulted in trail closures due to incidents of goat aggression toward people, 

with two reported gorings (1999 and 2010), the worst of which was fatal (Happe 2011).   
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Figure 2-1.  Mountain goat dispersal progress in the Olympic Range.  Movement occurred in 
a southeasterly direction from the release site near Lake Crescent in the foothills of Mount 
Storm King (starred).  The year a goat was first reported in specific areas of the range are 
listed (initial date) followed by the year that a nanny with kid-at-heel was first reported 
(parentheses).  Modified from Moorhead and Stevens (1982).   
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 In an effort to manage the rapidly expanding population and mitigate the 

environmental degradation and public safety threat imposed by the goats, a management plan 

was enacted in 1981 with the primary objective of population reduction, via translocation 

from within the park and hunting outside the boundaries of the park (Houston et al. 1994).  

The plan, described in Houston et al (1991b, 1994), occurred in two phases beginning with 

the experimental phase that ran through 1987 and concluding with the operational phase that 

was scheduled to terminate in 1992.  Objectives for the experimental phase were to 

determine current population density and distribution, evaluate various goat removal 

techniques, and to monitor the effect of reductions on vegetation and soil.  Two hundred 

sixty removals by ONP officials occurred during the experimental phase.  While completing 

this phase, land managers determined that full extirpation was necessary in order to preserve 

the alpine ecosystem (Schreiner 1987 as cited in Houston et al. 1991b).  Thus, the primary 

objective of the operational phase was to eliminate mountain goats from the core area of the 

park.  This objective fell under intense public scrutiny and was the subject of much 

controversy (Anunsen and Anunsen 1993, Scheffer 1993, Lyman 1994, Hutchins 1995, 

Wright 1996).  An additional 147 goats were removed during the operational phase (Houston 

et al. 1994).   During the extent of the management plan, 407 goats were removed by park 

officials and 114 goats were harvested (total population reduction of 521).  Operations were 

prematurely canceled in 1990 by the superintendent of Olympic National Park.  Risks to the 

capture team had become too great and the publication of a full environmental impact 
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statement addressing mounting public concerns was deemed necessary before additional 

action was taken (Houston et al 1994). 

 In the midst of removal operations, an aerial census of the Olympic range conducted 

in July of 1983 during the experimental phase estimated the mountain goat population at 

1175 (95% CI 839 – 1510; Houston et al. 1986).  Subpopulations were distributed 

nonuniformly, with densities, population dynamics, and individual body conditions varying 

widely between these groups (Stevens 1983).  The subpopulation on Klahhane Ridge, located 

at the north end of the park, exhibited a particularly high density (14 goats / km2) in relation 

to other subpopulations within the range (0.6-4 goats / km2; Stevens 1983).  Mountain goats 

in this high-density group displayed later primiparity, decreased fecundity, and reduced body 

mass in relation to nine other subpopulations examined by Stevens (1983).  Based on these 

indicators, Klahhane Ridge was determined to have reached ecological carrying capacity 

while other subpopulations within the range still displayed characteristics indicative of 

expanding populations.  As such, Klahhane Ridge was the area used for density reduction 

experimentation during the first phase of the management plan with a population decrease of 

82% (230 to 41) from 1981 to 1986.  This reduction resulted in subpopulation dynamics 

more closely resembling those exhibited by the expanding groups elsewhere in the Olympic 

range (Houston and Stevens 1988). 

 In 1990, after the Olympic-wide removal efforts were terminated, a second aerial 

census was conducted, yielding an estimate of 389 (95% CI 181 – 597; Houston et al. 

1991a), a reduction in total population substantially greater than the actual number of 

individuals removed (Figure 2-2).  Between autumn 1983 and 1989 (after the first census and 

prior to the second), a total of 326 mountain goats were removed from the Olympics, with 
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245 (75.2%) moved for translocation and the remaining 81 harvested (Houston et al 1991a).  

Assuming both censuses were accurate, this leaves 460 individuals unaccounted for when 

ignoring regular birth and mortality that occurred between the 1983 and 1990 censuses.  

Houston et al. (1991b, 1994) suggests several possible sources of mortality that may have 

occurred in addition to the removals.  During the period from 1985 to 1989, 66% of the 102 

adult females captured were lactating.  Only in rare cases were kids captured with the 

nannies.  While cases of orphaned kids surviving mild winters have been documented 

(Chadwick 1974, Hutchins 1984), probability of survival is greatly reduced (Brandborg 

1955) and most of those orphaned during the removal process probably would have died.  

Furthermore, it is likely that increased mortality during relatively more severe winters (1984 

and 1987) further reduced the population (Houston et al 1991b).   

Figure 2-2.  Mountain goat population estimates from introduction in the 1920’s through 
2016.  Population estimates from 1983 and beyond were derived from counts obtained by 
aerial helicopter surveys based on stratified random sampling procedures.  Filled circles 
represent estimates acquired in survey areas above 1,520 meters while the closed triangle 
represents the 2016 estimate using an expanded survey area (>1,425 meters).  Error bars 
show 95% confidence limits of estimates from 1983 and beyond.   
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 After the 1990 aerial survey, population growth exhibited a period of stasis that lasted 

through 2004 before an increase was observed in 2011 (Jenkins et al. 2011).  Explanations 

for this period of slow growth are merely speculative but climate, low genetic diversity, and 

changing demographic processes are all potential factors.  Survey methodology was 

improved in 2011 (Jenkins et al. 2011b) with an expansion of the survey zone (suitable 

habitat at elevations above 1,425 meters rather than 1,520 meters) based on movement data 

for GPS collared goats and application of a recently-developed, detection bias model (Rice et 

al. 2009).  This methodology was applied during the most recent, 2016 survey, producing a 

population estimate of 623 (95% CI 539 – 707; Jenkins et al. 2016).  To facilitate direct 

comparison, the 2011 and 2016 population estimates were adjusted to reflect survey 

boundaries comparable to years prior (>1,520 meters).  The most recent census estimates 

mountain goat abundance at elevations above 1,520 meters to be 584 (95% CI 508 – 660), 

representing an average finite rate of growth of eight percent annually from 2004 to 2016 

(Jenkins et al. 2016).  This population growth has reinvigorated the need for action and ONP 

is considering a number of management solutions similar to those examined in the 1980s 

including zero action (with management such as hazing), translocation, lethal removal, or a 

combination of the former two (National Park Service 2017).   

 In the Cascade range to the east, mountain goat populations have suffered a 90% 

decline since 1961 (Rice and Gay 2010) and the Olympic goats have been identified as a 

potential augmentation source.  Over-hunting has been identified as the cause of the Cascade 

population decline but, despite a 90% reduction in hunting permits since the early 1990s and 
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subsequent recovery in several areas, some historical habitat remains unoccupied (Rice 

personal communication).  Approximately 150 of the animals removed from ONP during the 

1980’s were released in the Cascades.  Monitoring of the outcome of these translocations was 

limited but recent genetic work (Shirk 2009, Shirk et al. 2010, Parks 2013) has demonstrated 

that at least some of these animals survived and interbred with native Cascade animals.  

Evidence of this previous translocation success and revived management concerns in the 

Olympics have motivated plans for a second, large translocation effort.  Olympic National 

Park, working with the United States Forest Service (USFS), Washington Department of Fish 

and Wildlife (WDFW), and several Indigenous tribes, is actively engaged in planning for this 

project with the goal of beginning translocation work during the summer of 2018 (Happe, 

pers. com.). 

 Although it is not feasible to capture the entire Olympic population of approximately 

623 mountain goats, 200-250 animals could be available for translocation, offering potential 

for an increase in not only population size in the Cascades, but genetic diversity as well.  

Shirk (2009) found that both the Cascade and ONP populations have low genetic diversity 

compared to core populations in Alberta, Canada (Table 2-1).  However, as a result of the 

combination of unique alleles, ONP-Cascades admixed individuals showed diversity 

indicators much closer to that of the genetically rich, core population.  These data provide a 

strong indication that additional translocations from ONP to the Cascades could be quite 

beneficial.  If translocation efforts can result in an increase in both the number of goats and 

genetic diversity in the Cascades, this could play a significant role in restoring the 

population.   These data also suggest that a large reduction of the ONP population could have 
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a profound impact on the long-term viability of the remnant population, with the potential to 

push this population to extinction. 

Table 2-1. Genetic diversity summary statisticsa for mountain goat populations in 
Washington and Alberta, Canada.  Sample size (n), genetic diversity, inbreeding coefficient 
(FIS), and significance test for inbreeding also shown.  All statistics are based on 
microsatellite DNA (from Shirk 2009). 

Note.  Reprinted from “Mountain goat genetic structure, molecular diversity, and gene flow in the Cascade 
Range, Washington”, by A. Shirk, 2009.  MS Thesis, Western Washington University, Bellingham, WA. 

 

 Population modeling can be used to gain better understanding of a system and to 

predict future trends, thereby enhancing management efficiency and potential (Pojar 1981).  

My objective was to parameterize an existing population genetic model (Landguth and 

Cushman 2010) for use with mountain goats.  Population parameters for the model were 

derived from published literature.  I calibrated the model by simulating the population 

trajectory for Olympic mountain goats from establishment in 1925 through the first census in 

1983.  Additionally, I validated the model by simulating the period of stasis and growth that 

occurred between 1994 and 2016.  This model could be used to inform management 

decisions related to removals and could later be applied to the Cascade population in order to 
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evaluate a variety of augmentation scenarios.  To my knowledge, this is the first spatially 

explicit individual-based introduction model calibrated and validated with empirical data. 

 

3.0 Study Area 

The study area covers the Olympic Mountain range on the Olympic Peninsula of 

northwestern Washington; encompassing approximately 15,000 square kilometers. This 

range is bounded on three sides by the waters of the Pacific Ocean to the west, the Strait of 

Juan De Fuca to the north, and Puget Sound to the east.  The Chehalis River lowlands extend 

along the southern portion of the range and, in combination with the aforementioned marine 

features, isolate the Olympic Mountains from other ranges.  The Olympic range rises steeply 

and abruptly from sea level with more than 70 peaks extending above 2,000 meters.  Mount 

Olympus, the highest of these peaks, has an elevation of 2,430 meters.    Eleven major rivers, 

fed by expansive glaciers and snowfields, originate in these jagged cliffs and drain radially 

into the surrounding bodies of water (Tabor 1987).  The many peaks of the Olympic Range 

create a barrier for oceanic weather generated by the Pacific resulting in a stark contrast in 

annual precipitation between the western side of the range and the northeastern corner, which 

is situated in the rain shadow of the great mountains (Figure 3-1).  The western slopes of the 

Olympic Mountains possess the wettest climate in the continental United States (Tabor 1987) 

receiving an average of 600 centimeters (236 inches) of precipitation annually.  The 

northeastern corner, near the town of Sequim, experiences some of the driest conditions on 

the Pacific Coast with an average of 43 centimeters (17 inches) of precipitation annually, 

second only to southern California (PRISM Climate Group 2016).  Below 500 meters 
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precipitation falls primarily as rain while areas above 1,000 meters generally receive 

precipitation as snow.  

 

 

Figure 3-1.  Study area map showing mean annual precipitation in the Olympic 
Mountains, 1981 – 2010.  Polygons delineate mountain goat survey unit boundaries 
(>1,425 meters in elevation in areas of suitable habitat).  (Data source: PRISM 
Climate Group, Oregon State University, 1981 – 2010 precipitation normal, 
http://prism.oregonstate.edu) 

       

 The steep changes in slope, elevation, and precipitation across the Olympic range 

create a diversity of ecosystems that support uniquely rich biota.  Below approximately 1,500 
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meters forests are dominated by Douglas-fir (Pseudotsuga menziesii) and western hemlock 

(Tsuga heterophylla).  Above 1,500 meters forests transition to predominantly subalpine fir 

(Abies lasiocarpa) and mountain hemlock (Tsuga mertensiana).  These are interspersed 

among subalpine and alpine meadows largely comprised of grasses, forbes, and sedges 

(Rideout and Hoffmann 1975, Johnson 1983).  Mountain goats inhabit these alpine and 

subalpine zones during summer and early fall then move to cliff bands at lower elevations in 

response to snowfall during the colder months.  Fauna with the potential to prey upon 

mountain goats in the Olympics include mountain lions (Puma concolor), bobcats (Lynx 

rufus), coyotes (Canis latrans), American black bears (Ursus americanus), bald eagles 

(Haliaetus leucocephalus), and golden eagles (Aquila chrysaetos) (Rideout and Hoffmann 

1975, Johnson 1983).  Mountain lions are thought to be the most frequent predator on 

mountain goats while success of the other four species is limited to kids or adult goats who 

are weak from malnutrition or illness (Johnson 1983, Festa-Bianchet and Cote 2008).  The 

Columbian black-tailed deer (Odocoileus hemionus columbianus) and the Roosevelt elk 

(Cervus elaphus roosevelti) potentially compete with mountain goats for resources during 

winter months when the ungulates share forested ranges at lower elevations (Jenkins and 

Starkey 1984).   

 Adverse anthropological impact in the Olympic range is relatively low compared to 

surrounding areas because approximately 90% of the study area is inside Olympic National 

Park and the remaining 10% is within the adjoining Olympic National Forest.  A major 

highway runs the circumference of most of the Olympic range but the interior is 

uninterrupted by major roadways or agricultural lands.  The park receives a substantial 

number of annual visitors (Figure 3-2).  The park was established in 1938, with 75,310 
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people visiting the park in this first year.  This number has grown exponentially since then.  

From 1971 on, ONP has received more than two million visitors annually and over 3 million 

annually nearly every year since 1994. 

 

 
Figure 3-2.  Number of annual recreation visitors to Olympic National Park, 1935 – 2016.  
From https://irma.nps.gov/Stats/Reports/Park/OLYM. 

 

4.0 Methods 

4.1 Model Structure 

I used CDPOP for all population modeling.  A full description of the CDPOP model is 

provided in Landguth and Cushman (2010).  Briefly, this simulation program uses 

individual-based movement (including dispersal), reproduction, and mortality to predict the 

influence of landscape heterogeneity on population dynamics and genetic exchange.  Mate 

selection and dispersal are simulated across a resistance surface, with each pixel value 
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representing the species-specific, unit cost of crossing that pixel cell (Dunning et al. 1992, 

Cushman et al. 2006, Spear et al. 2010).  To begin, CDPOP reads in a table of input 

parameters including age-specific reproduction and mortality, mate movement, dispersal, and 

genetic processes.   The model then reads in potential (x,y) locations for every individual, 

including the founding population, with genotype, age, and sex specified for every member 

of this initial group.  Individual animals move to locate mates based on a user-specified 

function with resulting offspring inhabiting the mother’s home cell.  After the application of 

mortality to all individuals followed by the dispersal of offspring, the first modeled time 

period concludes.  CDPOP has been applied to simulations involving a variety of plant 

(Kitchen and Allaby 2013), mammal (Castillo et al. 2014, Row et al. 2014), fish (Cooke et al. 

2014), amphibian (Prunier et al. 2014), and reptile (DiLeo et al. 2013) species.  

 The CDPOP model requires a data layer that specifies landscape resistance; the ease 

with which animals can move across the landscape.  Landscape resistance can be influenced 

by a range of different natural and anthropogenic features.  In previous studies of mountain 

goats in the Cascades, Shirk et al. (2010) and Parks et al. (2015) found that landscape 

resistance was influenced by major roadways, water/wetlands, agriculture, urban land cover, 

elevation, and in some contexts, distance to escape terrain.  Because the Olympic Range is 

predominantly contained within the boundaries of ONP and thereby protected from 

development, major roadways, agriculture, and urban land cover are not features contributing 

to landscape resistance.  Additionally, the range’s isolation results in a large patch of 

connected habitat surrounded by features impassable to goats.  Wetlands and most large 

bodies of water occur in the foothills on the outer edges of the range and are beyond habitat 

accessed by the goats.  Landscape resistance related to rivers originating in the range is 
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largely influenced by the correlated elevation gradient.  Distance to escape terrain was found 

to have minimal influence on individual movement (Shirk et al. 2010) except in areas where 

it was a limited resource (Parks et al. 2015), a feature which does not apply to the craggy 

peaks of the Olympic Range.  Therefore, for the Olympic Range, I calculated landscape 

resistance based solely on elevation. 

 I utilized a 30 meter resolution digital elevation model (DEM) of western Washington 

(obtained from United States Geological Survey) to create a resistance surface.  In ArcGIS I 

calculated landscape resistance based on elevation for mountain goats using the following 

Gaussian function from Parks et al. (2015): 

𝑅 = 𝑅𝑚𝑎𝑥 + 1 − 𝑅𝑚𝑎𝑥 ∗ 𝑒

−(𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛−𝐸𝑜𝑝𝑡)
2

2∗𝐸𝑆𝐷
2  

where R is pixel resistance, Rmax dictates maximum resistance, Eopt is the optimal elevation, 

and ESD is the standard deviation of elevation.  As elevation moves away from Eopt, resistance 

increases from 1 to Rmax at a rate dictated by ESD.  Based on the most highly supported 

models for the entire Parks et al. (2015) study area, Rmax, Eopt, and ESD were defined as 5, 

1600 meters and 1500 meters respectively.  I clipped the DEM to the extent of the Olympic 

Mountains and resampled the cells to 100 square meters to obtain the same cell size* used by 

Parks et al. (2015).  I then rescaled the DEM to achieve cell values from one (low resistance) 

to two (high resistance), thereby creating the final resistance surface model (Figure 4-1). 
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Figure 4-1.  Landscape resistance based on elevation and potentially inhabitable points 
within the Olympic Range.  Light colored areas correspond to areas of substantial resistance 
to movement while darker areas correspond to areas of low resistance.  Each purple dot 
represents a landscape location that has the potential to be filled by an individual mountain 
goat in the model.  A weighted selection was used to distribute points based on habitat 
suitability (the inverse of resistance; see text for details). 

 

 CDPOP requires the designation of XY coordinates for sites that could potentially be 

occupied by an individual animal.  These potential sites are then used to create a cost 

distance matrix between sites.  I determined that approximately 3,000 points or greater would 
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be sufficient to encompass the maximum observed population (approximately 1,200 animals 

in 1983) while not limiting growth by lack of open space and allowing me to observe 

populations trends for several modeled years after the maximum observed population was 

attained.  I used the inverse of the DEM-based resistance surface, prior to rescaling, to create 

a movement suitability model (Mateo-Sánchez et al. 2015).  The movement suitability model 

was then rescaled to achieve suitability values from zero (low movement suitability) to one 

(high movement suitability).  Random points representing potentially inhabitable spaces in 

areas of high movement suitability were generated by creating a raster of random floating-

point values between 0.0 and 1.0 within the extent of my study area.  After I subtracted the 

random floating point raster from the movement suitability model, I began selecting sites for 

potential occupancy beginning with the highest value.  I found that using a minimum value of 

0.931 resulted in 3,231 potentially occupied cells concentrated in areas of high habitat 

suitability.   I then converted these cells to XY coordinates available for inhabitation by 

individual goats in the model.  I created a cost distance matrix in UNICOR (Landguth et al. 

2012a) simulator using the landscape resistance surface and the 3,231 point locations.  

UNICOR simulator uses a modified Dijkstra’s algorithm (Dijkstra 1959) to calculate the least 

cost path from every specified location on a landscape to every other location (Landguth et al 

2012).  This cost distance matrix was used to inform mate movement and natal dispersal, as 

discussed in 4.2.3. 

 Genotypes for the founding goats were generated using genetic data recently 

collected by Shafer et al (2011) from locations near the original 1920’s capture sites.  Of 157 

total samples selected by location, 50 were from the Selkirk Mountains in British Columbia 

and the remaining 107 were from the Coast Mountains near Juneau, Alaska (Figure 4-2).  
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Samples were not collected in the Chugach Mountains near Cordova, where two of the 

founder goats originated, and the nearest samples collected were southeast of the Chugach 

range on the Kenai Peninsula.  The Kenai population is on the periphery of the range and 

exhibits particularly low measures of genetic variability (A. B. Shafer et al. 2011).  Samples 

from that area would not represent the diversity within the Chugach range and as such were 

omitted.  Because only two of the eight Alaskan founder goats were from the Chugach area, I 

decided to assign all of the Alaskan genotypes based on Juneau samples.  Individual 

genotypes for each of the founder goats were randomly generated within CDPOP using the 

allele frequencies I calculated for 109 unique alleles at 19 loci from the dataset for each 

location.   

 Genetic diversity for the modeled population was evaluated using observed 

heterozygosity.   Observed heterozygosity refers to the percent of loci containing 

heterozygous alleles for every individual goat.  As a result of genetic drift (random 

fluctuations in allele frequencies), observed heterozygosity decreases over time at a rate 

correlated with population size (Hartl 2000, Gillespie 2004, Halliburton 2004, Templeton 

2006).  Mainguy et al. (2005) documented observed heterozygosity of 0.56 at Caw Ridge.  

Shirk (2009) reported considerably lower genetic diversity for the mountain goats within 

ONP (Ho 0.37).  Modeled mean observed heterozygosity for the entire population was 

calculated within CDPOP for every modeled year.   
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Figure 4-2.  Allele frequency source samples from Alaska and British Columbia.  Samples 
are a subset from Shafer et al (2011). 
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 A single start date was necessary for initializing the model.  Introductions potentially 

occurred over a five year period (1925 – 1930), with the largest number of goats being 

introduced toward the end of this period, so I chose 1928 as the initialization date.  As such, 

the first population estimate in 1983 would have occurred at simulated year 55.  I simulated 

70 consecutive years (to 1998) in order to model population trends beyond this timeframe.  

Klahhane Ridge was the only subpopulation that reached carrying capacity.  As such, I chose 

an exponential growth function as opposed to one limited by carrying capacity.  It is likely 

that the vast expanse of connected prime habitat within the Olympic Range provides 

abundant unexploited areas for goat inhabitation, alleviating over-crowding and over-

grazing, thereby moderating progress toward ecological carrying capacity (Varley 1996).  

Population dynamics over this 70 year period were simulated for three different scenarios.  

The first and second scenarios used parameter estimates specific to expanding populations, 

with one representing each plausible extreme for sex and total-animal combinations based on 

historical records.  A total of 12 goats with a bias toward females (8 females and 4 males), 

hereafter referred to as “12 Founders”, and a total of 11 goats with a bias toward males (6 

males and 5 females), hereafter referred to as “11 Founders”, were used to initialize these 

two simulations.  The third simulation scenario was parameterized based on data from Caw 

Ridge (Festa-Bianchet and Cote 2008) and represents established population dynamics for 

comparison purposes.  It was initialized using the 12 founding goats described above and 

hereafter will be referred to as “Caw Parameters”.  To asses variability in population growth, 

I performed ten replicate runs for each of the three scenarios.  For every reported factor, I 

calculated confidence intervals around each year for the entire study period using the mean 

from the 10 replicate runs.  
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4.2 Model Parameterization 

4.2.1 Mortality 

Festa-Bianchet and Cote (2008) conducted the most extensive and well-documented 

mountain goat demographic study to date, spanning sixteen consecutive years in a marked 

population at Caw Ridge in Alberta, Canada.  This study provides the only available sex- and 

age-specific survival data for mountain goats.  The most frequent causes of mortality for 

mountain goats are predation (Rideout and Hoffmann 1975, Johnson 1983, Festa-Bianchet 

and Cote 2008) and incidences of natural mortality, with the latter occurring most often 

during the winter months due to greater susceptibility to starvation, accidents, and disease 

(Chadwick 1977, Johnson 1983, Stevens 1983, Swenson 1986).  Juvenile survival, especially 

of kids, is highly variable (Stevens 1983, Gaillard et al. 1998, Festa-Bianchet and Cote 2008) 

and is impacted most by population density and winter conditions (Adams and Bailey 1982, 

Stevens 1983).  Males experience greater mortality than females for all but their first year of 

life (Festa-Bianchet and Cote 2008, Pelletier et al. 2009), with less than 10% of yearling 

males in the Caw Ridge population surviving to 10 years (Festa-Bianchet and Cote 2008).  

This may be a result of the substantial reduction in time spent foraging during the breeding 

season combined with high energy expenditures associated with competition for mating 

(Mainguy et al. 2008, Pelletier et al. 2009).  As a consequence of these factors, males likely 

start the winter in relatively poor body condition and may experience higher rates of 

mortality as a result (Pelletier et al 2009).  Another contributing factor may be the habitat use 

patterns displayed by males (Festa-Bianchet and Cote 2008).  In contrast to females in 

nursery groups, males make limited, predictable daily movements, travel in small groups, and 

utilize forest habitat with regularity, likely making them more vulnerable to predation.  Adult 
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female survival is greater than adult male survival (over 50% of yearling females survived to 

10 years in the Caw Ridge population), and similar to other ungulates, is relatively high and 

stable throughout their prime-aged (two to seven or eight) years (Gaillard et al. 1998, Festa-

Bianchet and Cote 2008).   

 When establishing mortality parameters in CDPOP, I used the Caw Ridge survival 

data (Festa-Bianchet and Cote 2008) for both males and females ranging from two to eight 

years old (Table A-1) due to the strength of the dataset and its relative agreement with 

findings from other studies.  Survival of adults four to nine years old was 95.2% in the Caw 

Ridge population (Côté and Festa-Bianchet 2003).  Smith (1986) observed 99% survival in 

adults two to eight years in three subpopulations in Alaska.  Hayden (1984) reported a 

survival rate of 93% for adults over two years in an introduced population of mountain goats 

in Idaho.  When parameterizing models informed by their own literature review, Naylor 

(1988) used an adult survival rate of 95% and Rice and Gay (2010) used a rate of 92.5% for 

adults three to eight years old.  While direct comparison of these rates is complicated by the 

differences in adult age-class boundaries, it is evident that the data from Caw Ridge is 

representative of other populations.   

 The data from Festa-Bianchet and Cote (2008) used for survival parameters extended 

to 11 years for males and 16 years for females.  While the oldest documented male and 

female mountain goats were 15 and 18 years old respectively, few survive past 12 years 

(Chadwick 1977, Festa-Bianchet and Cote 2008).  I utilized the 11-year constraint applied by 

the Cote and Festa-Bianchet dataset to determine the maximum age for males in the 

simulation.  Experimental model runs extending lifespan for males to the actual, observed 

maximum lifespan showed no appreciable difference in total population size because of the 
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extremely small number of goats surviving to this maximum expectancy.  I based the 

maximum age for females on data from Stevens’ (1983) work in the Olympics.  At the 

cessation of that study, one 12-year-old female represented the oldest documented goat in the 

range, supporting the fact that few survive past 12 years while also suggesting that some may 

live until at least 13.  As such, I set maximum age for females in the model at 13 years. 

 With the lifespan of both sexes shortened relative to the Caw Ridge data, age-specific 

survival for individuals nearing the end of life needed to be adjusted accordingly.  The mean 

survival rates for males and females nine years and older in the Caw Ridge population are 

71% and 84% respectively.  Data on age-specific survival rates for older goats in introduced 

populations is sparse.  Smith (1986) evaluated the rates and causes of mortality within three 

expanding subpopulations of mountain goats near Ketchikan, Alaska.  The annual survival 

rate for goats over 8 years was 68%.  Based on the male to female ratio for each stage from 

Hamel et al (2006), Rice and Gay (2010) partitioned this pooled survival rate by sex.  They 

calculated a survival rate for animals nine years and older of 71% for females and 58% for 

males.  I calculated the mean survival rate for goats nine years and older using the Caw 

Ridge and the partitioned Ketchikan data, then reduced survival by one percent for both 

sexes to slightly bias this rate toward the expanding population values.  This resulted in 

annual survival rates of 76.5% and 63.5% for females and males nine years and older in the 

modeled population. 

 For many species of ungulates, adult survival varies minimally between established 

and expanding populations while juvenile survival is much more sensitive to density effects 

(Gaillard et al. 1998).  I calculated mean kid and yearling survival rates specific to expanding 

and established populations (70.5% and 66% respectively) using values reported in the 
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literature (Table A-3).  I decreased the calculated annual mean kid survival rate for 

expanding populations by 1 to account for the potential influence of the Klahhane Ridge 

subpopulation.  As described previously, it was determined that this subpopulation had 

reached ecological carrying capacity.  In 1981 there were an estimated 229 goats at Klahhane 

Ridge (Houston et al. 1994), representing at least one-fifth of the total population at that time.  

If kid survivorship in the Klahhane subpopulation followed trends of established populations 

observed elsewhere, then the influence of this sizeable subpopulation would slightly reduce 

mean kid survivorship for the entire range.  There has been no significant difference noted 

between the survival rates of male and female kids (Stevens 1983, Festa-Bianchet and Cote 

2008) so I applied the 69.5% survival rate to both sexes.  The calculated mean yearling 

survival rate for expanding populations was 79% when pooled across sexes.  Male and 

female survival rates for this age class within the Caw Ridge population are representative of 

this pooled value and as such were retained.  CDPOP functions by removing a user-input 

percent of individuals rather than retaining them, essentially applying mortality to the 

population.  In order to operate within this framework, I subtracted every age- and sex-

specific survival rate from 100 to convert the percent of individuals surviving to the percent 

experiencing mortality.  

 

4.2.2 Female Reproductive Rate 

Mountain goats mate during a rutting period that lasts from mid-November until early 

December (Smith 1976, Festa-Bianchet and Cote 2008, Mainguy et al. 2008).  During this 

period females are in estrous for approximately two days and are constantly courted by a 

male (Mainguy et al. 2008).  While it has been documented that both males and females can 
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have multiple mates, this is a much more common behavior for males (Mainguy et al 2008).  

Female goats likely need to attain a threshold body weight before becoming sexually mature 

(Houston et al. 1989, Festa-Bianchet and Cote 2008).  In introduced and captive populations, 

where ample forage is present, females may reach sexual maturity as yearlings.  Within these 

populations, primiparity (giving birth for the first time) has been observed as early as 2 years 

of age with most females reproducing by 3 years (Stevens 1983, Houston et al. 1989, Bailey 

1991).  In most native populations however, primiparity does not occur until 3 years and the 

majority of females will be four or five before first giving birth (Chadwick 1974, Smith 

1976, Festa-Bianchet and Cote 2008).  Males can become sexually mature as yearlings 

(Henderson and O’Gara 1978, Houston et al. 1989) but the timing of their participation in the 

rut varies (Chadwick 1974, Johnson 1983).  Males most actively participate in the rut when 

they have attained their peak mass, which occurs at around six to eight years in native 

populations (Mainguy and Côté 2008) but can occur earlier in newly introduced and captive 

populations (Houston et al. 1989).  During a study of the native Caw Ridge population, no 

males three years or younger were observed to take a mate (Mainguy et al. 2008) while in a 

captive herd all males bred as yearlings (Houston et al. 1989). 

 Female reproductive rate varies considerably and is likely related to winter conditions 

endured either during or one year prior to gestation (Brandborg 1955, Stevens 1983, Bailey 

1991).  Density and time since establishment can also influence reproduction within a 

population, likely due to differences in resource availability (Smith and Fowler 1981, 

Johnson 1983, Gaillard et al. 1998, Côté and Festa-Bianchet 2003, Lemke 2004).  Colonizing 

herds as well as populations in areas where the density has been substantially reduced often 

exhibit higher reproductive rates than native or high-density populations (Caughley 1970, 
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Johnson 1983, Swenson 1986, Bailey 1991, Dane 2002).  After the initial increase, female 

reproductive rate continues to remain relatively high until approximately 13 years of age at 

which point it declines slightly (Festa-Bianchet and Cote 2008).  This reproductive 

senescence likely has a minimal impact on population dynamics because few females 

actually survive to this age and the majority of those that do continue to produce kids (Festa-

Bianchet and Cote 2008).  Females generally give birth to a single kid (Adams and Bailey 

1982, Johnson 1983, Cote and Festa-Bianchet 2001), but incidences of twinning also occur 

with rates varying between established and introduced populations (Table A-4).       

 I based female reproductive rates on a compilation of data from colonizing herds and 

the Caw Ridge study.  Again, the latter, 16-year study provided the most comprehensive, 

age-specific dataset.  Because early primiparity is characteristic of colonizing populations but 

was not observed in the native Caw Ridge population, I used the mean reproductive rates for 

two, three, and four year olds in three introduced populations to supplement the Caw Ridge 

data (Table A-2).  These mean values were reduced by 3 to reflect the lower reproductive 

rates documented within the subpopulation on Klahhane Ridge.  Reproductive rates for 

females five years and older were based on the Caw Ridge dataset.  After several iterative 

model runs, I set the twinning rate at 5.7%, the mean rate observed by Stevens (1983) for 

expanding subpopulations across the range.  Restrictions within the model limited polygamy 

to males exclusively rather than both sexes.  Mainguy et al (2008) documented half the 

females in one rutting season out of the three observed taking multiple mates.  This suggests 

polygamy by females may be atypical and as such warrants the imposed restriction. 
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Table 4-1.  Model parameters: annual survival (S) and reproductive rate (RR) by sex (F/M) 
and age class.  Parameters were established using data from Caw Ridge in Alberta, Canada 
(Festa-Bianchet and Cote 2008) as the baseline.  Adjustments were made to survival rates for 
both sexes at age classes 0 and 9+, and to reproductive rate for age classes 2-4 to reflect 
demographics for expanding populations. 

Years  0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

S F 69.5 84.7 90 90 97.5 95 95 96 91.5 76.5 76.5 76.5 76.5 76.5 0 
S M 69.5 73.5 74 75 92 78.5 92 86 70 63.5 63.5 63.5 0 0 0 
RR F 0 0 13.4 61.8 70.8 67.2 73.8 73 78.6 84 81.4 81.8 78.3 72.2 0 

 

 

4.2.3 Movement 

CDPOP simulates two types of movement across the landscape: mate movement and natal 

dispersal.  Mate movement occurs every year that an individual is considered sexually 

mature.  Distance travelled for this movement is determined using a probability function 

constrained by a maximum threshold cost distance, both of which are specified by the user.  

From each female, the distance to every male on the landscape can be quantified on the basis 

of a particular cost distance value.  This value is converted to a probability value with all 

cells outside of the user specified threshold becoming a probability of zero.  The mating male 

is chosen using a weighted random draw from the specified probability distribution.  This 

process is then repeated with the next female in an order determined by random draw and 

continuing through every female. Because male polygamy has been specified, an individual 

male may be chosen to mate multiple times.  Natal dispersal occurs only once during the 

individual’s first year and involves moving from the mother’s space to a unique location.  

Distance of this dispersal is determined in the same manner as mate movement but, unlike 

the latter, can be specified by sex.   
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Mate Movement 

Throughout the rut, males will expend considerable amounts of energy moving from ridge to 

ridge as they travel between area subpopulations in search of receptive females (Geist 1964, 

Smith 1976, Chadwick 1977, Smith and Raedeke 1982, Fox et al. 1989).  The actual distance 

traveled depends on the topography of a particular area and the distance between neighboring 

groups (Côté and Festa-Bianchet 2003).  This rut movement often represents the greatest 

distance travelled by a male (Smith and Raedeke 1982, Fox et al. 1989).  Females, in 

contrast, predominantly stay within their home range (Geist 1964, Chadwick 1977, Smith 

and Raedeke 1982, Fox et al. 1989).  Smith and Raedeke (1982) present data for the 

movement of two radio-collared males during the rutting season in 1980 and 1981, a third 

individual male during the 1981 rut.  This study was conducted in a region climatically 

similar to the Olympic Mountains with similar spatial distribution of goat habitat.  Movement 

distances were extrapolated (Figure 4 in Smith and Raedeke 1982) and ranged from two to 

25 kilometers with a mean distance travelled of 6.5 kilometers (standard deviation: 5.5 

kilometers).  Each movement distance represented kilometers travelled between different 

subpopulations, with multiple visits recorded for a single male during each rutting season, 

rather than a total distance for the entire period. 

 In order to convert Euclidean distances reported in the literature to cost distances for 

the model, I created a Euclidean-distance matrix using the same process described for the 

cost distance matrix.  I then estimated the approximate relationship between every value in 

the Euclidean-distance matrix and the corresponding value in the cost distance matrix using 

simple linear regression (adj. r2 = 0.9964; p<0.0001):  ED = 0.89*CD + 133.         
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 I specified mate movement using a Gaussian probability function with a mean cost 

distance of 7217 and a standard deviation of 6099 (Euclidean distance mean:  6.5 kilometers; 

SD: 5.5 kilometers).   The maximum cost distance threshold was 27900 (Euclidean distance 

of 25 kilometers).   

 

Natal Dispersal 

Mountain goats typically inhabit summer and winter ranges, migrating seasonally to avoid 

the deepest snowpack and to access forage (Rideout 1977, Stevens 1983, Fox et al. 1989, 

Varley 1996, Rice 2008).  Females in nursery groups often travel extensively across summer 

ranges while males utilize areas on the peripheral of this range, spending a greater amount of 

time in forested areas and moving substantially smaller distances (Festa-Bianchet and Cote 

2008).  The extent of movement within and between seasonal ranges is largely influenced by 

topography (Johnson 1983, Festa-Bianchet and Cote 2008).  Fidelity to home range is 

exhibited for both sexes, with females tending to remain within natal ranges and males often 

dispersing to an independent range that is used habitually once established (Chadwick 1977, 

Hutchins 1984).  Natal dispersal, as defined by Greenwood (1980), involves the movement of 

an individual from its birthplace to a new location.  While natal dispersal is significantly 

more common for males, it has been noted for females in several populations as well 

(Hutchins and Stevens 1981, Johnson 1983, Stevens 1983, Festa-Bianchet and Cote 2008).  

Dispersers of both sexes are predominantly younger, generally between one to three years of 

age (Stevens 1983, Festa-Bianchet and Cote 2008).  

 Stevens (1983) conducted a detailed study of mountain goat dispersal in the Olympic 

Range and defined five categories of long distance (travelling greater than 15 kilometers) 
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movement (migrators, probers, permanent, wanderers, and undefined).  Two females, 

categorized as migrators because their movement was seasonal and repeated annually, each 

moved 16 kilometers.  All other long distance movements were 19 kilometers or greater for 

either sex.  Permanent movements, those resulting in an individual taking up residence in a 

new area for at least 2 years, resulted in the greatest distances travelled for both sexes.  Four 

females and eight males made permanent movements, with mean distances of 51.8 and 35.5 

kilometers travelled respectively (range of 22 to 54 kilometers and a mean of 40.9 kilometers 

for both sexes combined).  From the subpopulation on Klahhane Ridge, the only 

subpopulation within the Olympic Range considered to have reached carrying capacity, 

19.6% of all males and 5.5% of all females emigrated (10% of the total population).  

Emigration from other subpopulations within the Olympic range was much lower, with 9% 

of males and no females observed leaving their natal range; however, this figure is based on a 

sample size that is quite small in comparison to the Klahhane Ridge population.  Across all 

subpopulations in the Olympics, females dispersed significantly farther than males.  Festa-

Bianchet and Cote (2008) saw 59% of two- and three-year old males disappearing from Caw 

Ridge during July and August.  (Note that the percent dispersing reported for Klahhane 

Ridge was based on all males or females within the subpopulation rather than just two- and 

three-year-olds as reported here.)  While a portion of this disappearance could be explained 

by mortality, the authors hypothesize that most of these young males emigrated to a new 

population.  Two females, one yearling and one two year old, were known to have emigrated 

from Caw Ridge. 

 Based on the observations of Stevens (1983), I defined natal dispersal as movement 

greater than or equal to 17 kilometers from an individual’s birthplace.  Movement below this 
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threshold is likely movement within the natal range, including annual migration.  I used a 

negative exponential function to determine probability of dispersal for both sexes and 

manipulated the parameters until I achieved approximately 14% of total males (49% of male 

kids) and 2% of total females (12% of female kids) dispersing (moving a distance greater 

than or equal to 17 kilometers).  These figures are similar to the range of values reported by 

Festa-Bianchet and Cote (2008) as well as Stevens (1983).  I used a maximum distance 

threshold of 54 kilometers (CD = 60,322) for females and 48 kilometers (CD = 53,614) for 

males.  A summary of modeled parameters is included in the appendix A (Table A-5). 

 

4.3 Sensitivity Analyses 

After parameterizing the model, I assessed relative sensitivity of the modeled population to 

changes in annual reproductive rate, juvenile (kids and yearlings) mortality, and male and 

female mortality (all age classes for each sex).  Using the “12 founder” scenario to initialize 

the model, I individually increased each parameter by 10% then subsequently decreased each 

parameter by 10% and simulated population growth over time.  To asses variability in 

population growth, I performed 10 replicate runs for each parameter. 

 

4.4 Model Validation 1990 - 2030 

I used the single “12 Founder” simulation run most closely representing the mean of the 10 

replicate runs at simulated year 55 to initialize model validation.  I reduced this modeled 

1983 population to the observed population estimate of 389 (95% CI 181 - 597) goats 

observed during the aerial survey in 1990.  This reduction was intended to incorporate the 

effect of the animals removed through translocation and harvest activity between 1981-89, 
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the loss of kids orphaned by these actions, and possible increased mortality due to relatively 

harsh winters toward the end of this period.  I then simulated population growth from 1990 to 

2030 using the parameters previously outlined.  Four sex-based removal scenarios were 

evaluated:  one simulated a completely randomized removal and three simulated removals 

biased toward females with 70%, 75% and 80% of those removed being female.  To asses 

variability in population growth, I performed 10 replicate runs for each removal scenario. 

 

5.0 Results 

5.1 Model Calibration 

I used the 1983 aerial survey population estimate of 1,175 plus an additional 213 goats as the 

population reference value for model calibration.  Prior to the 1983 survey, 151 goats were 

removed from Klahhane Ridge (Houston et al. 1994).  I assumed random removal which 

would result in at least 62% of those removed being female.  Based on data from the 1985 – 

1989 removals (Houston et al. 1994), I also assumed that 66% of these females were 

lactating resulting in 62 associated kid deaths.  Actual removals prior to 1983 combined with 

associated kid deaths (213 total mountain goats) were not accounted for in the model and 

were therefore added to the 1,175 population estimate producing a new, population reference 

value of 1,388 (95% CI 1,053 – 1,723). 

 At year 55 none of the confidence intervals for the three modeled scenarios overlap, 

indicating significant difference between them all (Figure 5-1).  The “12 Founder” 

population model most closely matched the observed population estimate +213, with a 

modeled mean total population of 1,449 (95% CI 1,328 – 1,570), only 4.4% above the 
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reference value.  The “11 Founder” scenario produced a modeled mean population of 1,162 

(95% CI 1,030 – 1,294), which is 16.3% below the reference value.  While this scenario does 

not represent the 1983 population estimate as well as the “12 Founder” scenario, the modeled 

mean of the “11 Founder” scenario is still within the 95% confidence limits of the 1983 

population estimate (1,053 – 1,723).  “Caw Parameters” resulted in a modeled mean 

population of 346 (95% CI: 323 - 369), well below the 95% confidence limits of the 1983 

population estimate at 75% lower than observed. 

Figure 5-1.  Modeled mean population of mountain goats.  The vertical dotted line at 55 
years since 1928 corresponds to the year 1983 with the horizontal line indicating the actual 
population estimate of 1175 with 213 individuals added to account for removals prior to 1983 
and presumed, associated kid deaths not included in the model.  Two modeled scenarios used 
parameter estimates for expanding populations and represented the most realistic extremes 
based on anecdotal accounts (“12 Founders” and “11 Founders”).  The third scenario used 
parameter estimates for the established population at Caw Ridge (“Caw Parameters”).  
Shaded areas correspond to 95% confidence limits for each modeled scenario. 

 

 The two modeled expanding population scenarios produced similar male to female 

ratios: 0.625 (95% CI 0.607 – 0.643) for the “11 Founders” scenario and 0.628 (95% CI 
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0.622 – 0.635) for “12 Founders” (Figure 5-2).  The modeled established population (“Caw 

parameters”) consistently had fewer males to every one female than either of the modeled 

expanding populations (“11 Founders” or “12 Founders”).  At year 55 the model using Caw 

Ridge parameter estimates had a male to female ratio of 0.546 (95% CI 0.524 – 0.569). 

Figure 5-2.  Modeled male to female ratio.  Two modeled scenarios used parameter estimates 
for expanding populations and represented the most realistic extremes based on anecdotal 
accounts (“12 Founders” and “11 Founders”).  The third scenario used parameter estimates 
for the established population at Caw Ridge (“Caw Parameters”).  Shaded areas correspond 
to 95% confidence limits for each modeled scenario.  Modeled expanding populations had a 
greater number of males to every one female than the modeled established population.  The 
vertical dotted line at 55 years since 1928 corresponds to the year 1983. 

 

 Modeled observed heterozygosity (Ho) was similar for all scenarios with substantial 

overlap between confidence limits (Figure 5-3).  The “Caw Parameters” scenario exhibited 

the highest Ho at the start of the simulated period but ended with the lowest, falling below the 

“11 Founder” scenario at year 20 and the “12 Founder” scenario at year 51.  The “11 

Founder” scenario exhibited the greatest Ho throughout the majority of the period.  At year 

55, Ho for the “11 Founder”, “12 Founder” and “Caw Parameter” scenarios were 0.535 (95% 
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CI 0.524 – 0.546), 0.518 (95% CI 0.501 – 0.535) and 0.515 (95% CI 0.488 – 0.542) 

respectively.  At year 55, all modeled scenarios exhibited much higher Ho than observed by 

Shirk (2009) in ONP and Ho values below those reported for Caw Ridge (Mainguy et al. 

2005). 

Figure 5-3.  Modeled observed heterozygosity. Horizontal dotted lines show actual observed 
heterozygosity for Caw Ridge (top) and Olympic National Park (bottom).  The vertical dotted 
line at 55 years since 1928 corresponds to the year 1983.  Two modeled scenarios used 
parameter estimates for expanding populations and represented the most realistic extremes 
based on anecdotal accounts (“12 Founders” and “11 Founders”).  The third scenario used 
parameter estimates for the established population at Caw Ridge (“Caw Parameters”).  
Shaded areas correspond to 95% confidence limits for each modeled scenario with 
substantial overlap exhibited between all scenarios. 

 

 From the “12 Founder” simulation, I selected the model run that most closely 

represented the population mean of all runs at year 55 to evaluate natal dispersal.  This run 

simulated a population of 1,469 which is approximately 20 goats greater than the mean for all 

model runs and 81 greater than the observed 1983 population estimate +213 goats.  Modeled 

dispersal occurred in a predominantly southern and slightly eastward direction.  Males 
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dispersed in greater numbers than females with both sexes appearing to disperse similar 

distances. Consistent with observations, modeled dispersal in 1938 shows goats inhabiting 

Mount Appleton and Klahhane Ridge (Figure 5-4).  Both sexes are present at these sites, 

which contradicts early records that did not document nannies with kids-at-heel until 25 – 30 

years later.  The model indicates that Mount Olympus and the central interior portion of the 

range contain individuals of both sexes.  In reality, these areas were last to be populated.  

One male and one female reached the eastern border of Olympic National Park and several 

goats are approximately eight kilometers from Mount Constance where anecdotal records 

document the first sighting in 1935. 

 Modeled dispersal in 1947 (Figure B-1) shows increasing populations in the central 

interior range, which contradicts observations.  Modeled goats continued to move south with 

several having reached Mount Anderson within a time period similar to that observed.  The 

ridges surrounding the headwaters of Gray Wolf River and its two largest tributaries, 

Cameron Creek and Grand Creek, are sparsely populated.  By 1959, one goat had dispersed 

as far south as Sawtooth Ridge (Figure B-2), approximately 5 kilometers from the southern 

National Park boundary.  Historical reports noted the first goat on Sawtooth Ridge in 1957 

and past the southern border in 1960.  Modeled dispersal progress in 1968 (Figure B-3) 

shows the greatest density of goats near Mount Olympus and Mount Ferry.  A sizeable 

population of goats exists outside the eastern National Park boundary.  One modeled female 

goat is approximately 69 kilometers from the release site and represents the greatest dispersal 

distance for that time period. 

 Modeled dispersal in 1983, the year corresponding to the first aerial survey, shows 

colonization across the Olympic Range (Figure 5-5).  Pockets of densely distributed goats 
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occur at Klahhane Ridge, Mount Appleton, Mount Olympus, Mount Ferry, and Mount Dana.  

The ridges around Gray Wolf River and its tributaries are well populated.  While most of the 

goats occur within ONP, a sizeable population inhabits terrain outside the eastern park 

boundary and non-park lands to the south and southwest are occupied by several smaller 

groups.  The greatest distance between release site and an individual goat is approximately 

70 kilometers.   
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Figure 5-4.  Modeled dispersal by sex for 1938.  Male mountain goats are symbolized by 
closed circles and females are symbolized by filled stars.  Year of actual first mountain goat 
sightings at sites specified by green triangles shown followed by year of first nanny with kid 
at-heel sightings (parentheses).  Modeled dispersal in 1938 shows goats present at Mount 
Appleton and Klahhane Ridge, which is consistent with observations. 
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Figure 5-5.  Modeled dispersal by sex for 1983.Male mountain goats are symbolized by open 
circles and females are symbolized by filled stars.  Year of actual first mountain goat 
sightings at sites specified by green triangles shown followed by year of first nanny with kid-
at-heel sightings (parentheses).  Modeled dispersal in 1983 shows colonization of the entire 
range, which is consistent with observed. 
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5.2 Sensitivity Analyses 

Adult (2+ years) mortality sensitivity analyses revealed striking differences between sexes.  

Both a 10% increase and a 10% decrease in male mortality produced modeled mean 

population estimates that varied little from the “12 Founder” scenario (1,404 and 1,445, 

respectively; Figure 5-6).  Ninety-five percent confidence intervals on each sensitivity 

parameter broadly overlapped, with both encompassing the confidence intervals of the “12 

Founder” scenario as well. 

  

Figure 5-6.  Adult male (2+ years) mortality sensitivity analysis.  The intersection of the 
vertical and horizontal lines marks the 1983 population estimate +213 for removals prior to 
1983 and related kid mortality.  The green dotted line represents a 10% decrease in mortality 
(increase in survival) for adult males, while the red dashed line shows a 10% increase in 
mortality (decrease in survival).  The difference between the two is virtually indiscernible 
indicating population growth has limited sensitivity to adult male mortality.  The “12 
Founder” scenario is represented by the solid black line.  Envelopes around each line show 
95% confidence limits. 
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 Modeled population growth was much more sensitive to changes in adult female 

mortality than adult male.  A 10% decrease in mortality (increase in survival) for females two 

years and older resulted in a modeled mean population of 2,007 (95% CI 1,850 – 2,164) at 

year 55, representing a 39% increase from the “12 Founder” modeled mean population the 

same year (Figure 5-7).  A 10% increase in mortality (decrease in survival) for adult females 

produced a modeled population mean 27% lower than the “12 Founder” scenario (1,061 95% 

CI 980 – 1,141).  Both the positive and negative adjustments to adult female mortality 

produced modeled mean population estimates significantly different from the “12 Founder” 

scenario.  Additionally, female mortality sensitivity analyses were statistically different from 

male and represented a significantly greater impact on modeled population growth. 

Figure 5-7.  Adult (2+ years) female mortality sensitivity analysis.  The intersection of the 
vertical and horizontal lines marks the 1983 population estimate +213 for removals prior to 
1983 and related kid mortality.  The green dotted line represents a 10% decrease in mortality 
(increase in survival) for adult females, while the red dashed line shows a 10% increase in 
mortality (decrease in survival).  The “12 Founder” scenario is represented by the solid black 
line.  Envelopes around each line show 95% confidence limits.  Adult female mortality had a 
much greater impact on population growth than adult male.       
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 Modeled population growth was more sensitive to changes in both juvenile mortality 

(kids and yearlings) and annual reproduction, than changes in adult mortality.  A 10% 

decrease in juvenile mortality (increase in survivorship) resulted in a population mean of 

2,253 at year 55 (95% CI 2,071 – 2,434) which is significantly different from the “12 

Founder” mean and represents a change of approximately 55% (Figure 5-8).  A 10% increase 

in juvenile mortality (decrease in survivorship) produced a population of 847 at year 55 (95% 

CI 778 – 915), a negative change of approximately 42%, which is significantly different from 

both the “12 Founder” scenario and the 10% decrease in juvenile mortality (increase in 

survivorship).   

Figure 5-8.  Juvenile mortality sensitivity analysis.  The intersection of the vertical and 
horizontal lines marks the 1983 population estimate +213 for removals prior to 1983 and 
related kid mortality.  The green dotted line represents a 10% decrease in mortality (increase 
in survival) for one and two year olds of both sexes, while the red dashed line shows a 10% 
increase in mortality (decrease in survival).  The “12 Founder” scenario is represented by the 
solid black line.  Envelopes around each line show 95% confidence limits. 
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Figure 5-9.  Annual reproduction sensitivity analysis.  The intersection of the vertical and 
horizontal lines marks the 1983 population estimate +213 for removals prior to 1983 and 
related kid mortality.  The green dotted line represents a 10% increase in the percent of 
females reproducing annually (ages 2+), while the red dashed line shows a 10% decrease.  
The “12 Founder” scenario is represented by the solid black line.  Envelopes around each line 
show 95% confidence limits. 

 

 When evaluating the sensitivity of annual reproduction, I observed a similar trend 

with both the increase and decrease in reproduction producing significantly different 

population means at year 55 (2,620 95% CI 2,345 – 2,892 and 719 95% CI 634 – 803 

respectively).  Manipulating annual reproduction by +/- 10% for each age class produced a 

greater percent change than the +/- 10% manipulation to juvenile mortality.  However, there 

is slight overlap in the 95% confidence intervals of both the positive and negative 

manipulation of these parameters indicating the difference in sensitivity between annual 

reproduction and juvenile mortality may not be significant.  Modeled population growth was 

significantly more sensitive to changes in annual reproduction than to adult female mortality. 
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5.3 Model Validation:  1990 - 2030 

I selected the model run that most closely represented the population mean of all runs at year 

55 to initialize model validation.  This run simulated a population of 1,469 which is 

approximately 20 goats greater than the mean for all model runs and 81 greater than the 

observed population estimate +213.  I removed 1,080 individual goats, using four removal 

scenarios, in order to initialize the model validation run with the 389 goats estimated for the 

1990 aerial survey.   

Figure 5-10.  Modeled population growth from 1990 – 2030.  Four removal scenarios were 
evaluated:  1) random removals (dashed line), 2) 70% females removed (dashed/dotted line), 
3) 75% females removed (dotted line), and 4) 80% females removed.  Shaded area around 
each line shows 95% confidence limits.  Aerial survey (>1,540 meters) population estimates 
for 1994, 1997, 2004, 2011, and 2016 are represented with closed triangles.  Error bars show 
95% confidence limits on each estimate.  The open triangle represents the 2016 population 
estimate for an expanded survey area (>1,450 meters). 

 

 The four modeled removal scenarios produced significantly different population 

means for every year from 1990 to 2030 (Figure 5-10).  When randomly removing individual 
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goats to attain the 1990 population estimate of 389, approximately 62% of the individuals 

removed were female.  This removal scenario resulted in immediate and sustained population 

growth.  When 70% of the individual goats removed were female, the population slightly 

declined before surpassing the initializing population size at year six with a modeled 

population of 400.  When 75% of the removals were female the modeled population declined 

until year six and surpassed the initializing population size in year 13.  Year four and year 

seven modeled population means were within the 95% confidence limits of the observed 

population estimates for the corresponding years (1994 and 1997 respectively; Table 5-1).  

When 80% of the removals were female the modeled population declined for almost a 

decade, reaching a low of 176 animals at year 8 and surpassing the initial starting population 

at year 23.  The modeled population means at years 14 and 21 were within the 95% 

confidence limits of the observed estimates for the corresponding years (2004 and 2011 

respectively).  At year 26 there is slight overlap between the 95% confidence limits of the 

modeled population mean and the observed population estimate, however the modeled mean 

is just outside the confidence limits of the estimate. 
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Table 5-1.  Modeled population growth by removal scenario.  Four removal scenarios were 
modeled with model output at years corresponding to observed population estimates shown 
here, along with 95% confidence limits for each value (LCI = Lower Confidence Interval; 
UCI = Upper Confidence Interval).  Values closest to those observed are shown in bold. 

 Modeled Removal Scenario Observed 

Pop. Estimate  Random 70% F 75% F 80% F 

Year 4 511 378 305 221 288 

LCI 507 373 299 217 225 

UCI 514 384 310 224 351 

Year 7 623 419 307 183 281 

LCI 615 410 299 178 238 

UCI 632 427 315 188 324 

Year 14 999 638 423 229 230 

LCI 968 612 407 216 193 

UCI 1030 664 439 242 267 

Year 21 1629 1025 671 360 350 

LCI 1568 985 638 336 270 

UCI 1690 1065 704 385 430 

Year 26 2314 1444 955 502 584 

LCI 2227 1376 909 463 508 

UCI 2401 1513 1001 540 660 

 

 Using the two removal scenarios demonstrating population growth trends that most 

closely matched observed (75% and 80% females removed), I evaluated male to female ratio 

and observed heterozygosity over the modeled 40-year period.  As one would expect, the 

number of males to one female at the start of the modeled period was higher for the 80% 

female removal scenario than for the 75% scenario (7.28 and 2.85 respectively).  Both 

modeled removal scenarios reached the male to female ratio observed for the “11 and 12 

Founder” scenarios during model calibration runs (~0.6) in approximately 12 years.  This 

ratio was maintained for the remainder of the modeled period.   
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Figure 5-11.  Modeled male to female ratio from 1990 – 2030.  Two of four removal 
scenarios are shown:  1) 75% females removed and 2) 80% females removed.  After year 11 
the male to female ratio maintains at approximately 0.6, the same value from the “11 
Founder” and “12 Founder” model calibration scenarios. 

 

 Modeled mean observed heterozygosity was slightly higher for the scenario with 75% 

females removed than with 80% but there was substantial overlap in the 95% confidence 

limits for each scenario suggesting this difference is not likely significant.  At the start of the 

period, modeled mean observed heterozygosity for both scenarios was approximately 0.55 

matching that recorded by Mainguy et al. (2005) for the established population at Caw Ridge.  

Modeled observed heterozygosity increased slightly for both scenarios then decreased to 

values similar to those at year 0.  Modeled mean observed heterozygosity for both reduction 

scenarios was substantially greater than the Ho recorded by Shirk (2009) for ONP animals.  

Due to this large discrepancy, I performed a second evaluation of modeled Ho to assess 

whether the low diversity observed by Shirk was an error in measurement resulting from the 

effect of small sample size (n = 12).  Using the 80% females removed scenario, I sampled 12 

individual goats from each of the 10 model runs.  Shirk possessed coordinates for 10 of his 

12 ONP genetic samples.  I selected the 10 modeled goats nearest these coordinates from 
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each of the 10 replicate runs, as well as two additional, randomly generated points to obtain a 

modeled sample size equal to Shirk.  Mean modeled Ho for this smaller sample size across all 

replicate runs was 0.57. 

 

Figure 5-12.  Modeled mean observed heterozygosity from 1990 – 2030.  Ho for the 75% 
removal scenario (dashed line) and 80% removal scenario (solid line) was similar to the Ho 
recorded for the Caw Ridge population (top horizonal line).  The lower horizontal line shows 
recorded Ho for goats in ONP. 

 

6.0 Discussion 

6.1 Model Calibration 

My research objective was to parameterize an existing model for use with mountain goats in 

the Olympic Range, with calibration utilizing the period from introduction to the first aerial 

survey in 1983 and validation through simulation of the period from 1990 to present.  Model 

calibration was successful with both the “11 Founder” and “12 Founder” scenarios producing 

modeled mean populations within the 95% confidence limits of the 1983 observed population 
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estimate (adjusted to account for removals prior to that date).  The “12 Founder” scenario 

was more closely representative of the Olympic population with the reference population 

value (1983 estimate plus 213) included within the 95% confidence limits of the modeled 

population mean.  In comparison, the scenario using parameters from the established 

population at Caw Ridge was an extremely poor fit for the observed population growth trend.  

These results suggest that goats within the Olympic Range exhibited population dynamics 

similar to those applied in both the “11 Founder” and “12 Founder” scenarios of the model.   

 As theorized by Stevens (1983), the difference in modeled population growth 

between the scenario using parameters from the established population at Caw Ridge and the 

two scenarios using parameters from expanding populations (including those in the 

Olympics), demonstrates that mountain goats in the Olympic Range were displaying 

population dynamics associated with rapid growth.  Eruptive fluctuations have been 

documented in established populations (Smith 1986, Dane 2002) and in populations recently 

introduced into new habitat (Lentfer 1955, Caughley 1970, Hayden 1984).  Riney (1964) 

proposed a four-phased population growth model for eruptive fluctuations of ungulates 

resulting from introduction or a major shift in resources.  The first phase is a period of 

population growth, characterized by high rates of survival and early primiparity, as animals 

capitalize on plentiful forage found in the new habitat.  The greater the suitability of the 

habitat the more rapid this growth.  During the second phase, animals have surpassed 

carrying capacity and resource depletion leads to plateaued growth and a decline in fitness, 

survival and reproduction.  Eventually the population plummets as resource limitation results 

in vulnerability to disease and winter starvation, and adult fecundity rates decrease.  Relative 
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population stability occurs during the final phase as ecological equilibrium is attained.  

Further eruptive oscillations can occur if this equilibrium is disturbed.   

 Parameter estimates used in the model were lower than those observed in newly 

introduced populations in Montana and Idaho (Lentfer 1955, Hayden 1984), and higher than 

those observed by Stevens (1983) in Olympic populations other than Klahhane Ridge shortly 

before the first aerial survey.  These estimates were applied consistently throughout the 

modeled period.  In order to achieve the growth observed and to display vital rates 

documented by Stevens, it is likely the Olympic population first exhibited dynamics similar 

to those in Montana and Idaho, and as time progressed dynamics driving growth began to 

lower.  The population at Klahhane Ridge was characterized by vital rates indicative of the 

plateau encountered during Riney’s second phase.  This was the only subpopulation 

displaying this trend during Stevens’ research.  Considering the vast expanse of suitable 

habitat available to mountain goats in the Olympics and the comparatively low density of the 

many other subpopulations throughout the range, it is likely that rapid growth rates outside of 

Klahhane Ridge would have persisted for some time were they not disrupted by removals. 

 

6.1.1 Natal Dispersal 

Mountain goat distribution and density within the Olympic Range varies both spatially and 

temporally.  At the time of the first aerial survey in 1983, substantial subpopulations 

inhabited areas around Chimney Rock, Mount Dana, Mount Ferry, Buckhorn Mountain, 

Mount Appleton, Mount Claywood, Klahhane Ridge, Royal Basin, Mount Washington, and 

Mount Constance.  The 2016 survey revealed similar subpopulation concentrations around 

Chimney Rock, Mount Washington, and Klahhane Ridge.  Large subpopulations had 
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established in new areas around Mount Olympus, the northern and southern ends of the 

Bailey Range (near Mount Carrie and Bear Pass, respectively), and in the Sawtooth range on 

the southeastern park boundary.  The subpopulation near Mount Appleton appears 

substantially reduced and the area around Mount Dana produced a survey count of zero 

compared to 45 during the 1983 survey.  While census units in the eastern portion of the 

range do not all directly align between survey years, it is apparent that several areas have 

experienced dramatic declines, including Buckhorn Mountain, Mount Constance, Royal 

Basin, and Mount Claywood.  Several areas were not surveyed during both years and could 

not be used for direct comparison including Mount Ferry, which was not surveyed in 2016, 

and Mount Anderson, Muncaster Mountain, and The Brothers, all of which were not 

surveyed in 1983.  However, Mount Ferry was included in the 2011 survey (count of 0 in the 

equivalent census area) and Mount Anderson and Muncaster Mountain were included in the 

1990 survey (each with a count of 4 in the equivalent census area), providing evidence of 

substantial subpopulation decline in the former and increase in the latter two. 

 Modeled dispersal distribution and density at year 55 was relatively consistent with 

observed patterns in 1983 with the most striking incongruency being the sizeable 

subpopulation inhabiting Mount Olympus.  The model shows a high density of goats in this 

area, which was not consistent with reports at the time, but is more representative of 

observed distribution patterns in 2016.  As mentioned previously, deep and persistent 

snowpack may have limited mountain goat access to the western portion of the Olympic 

Mountains.  Not only are these areas characterized by exceptionally high amounts of 

snowfall, they also contain the range’s largest glaciers.  However, these conditions have 

begun to change due to climate change.  In 1982 there were 266 glaciers in the Olympic 
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Mountains (Spicer 1986).  This number decreased to 184 by 2009, a combined glacier area 

loss of 34%, with glaciers facing south or in the eastern portion of the range experiencing the 

greatest loss (Riedel et al. 2015).  Glaciers on Mount Olympus lost 12% to 61% of their total 

area during this period.  This glacial recession is indicative of a correlated loss of snowpack 

in general.  While newly exposed areas once covered by glaciers will remain barren of 

vegetation for decades, it is likely the reduction in snowpack exposed new habitat options in 

areas once only marginally accessible.  The glacier on Mount Carrie (Carrie) and two on 

Mount Anderson (Eel and Anderson) have also exhibited dramatic recession (total area losses 

of 37%, 23%, and 77% respectively) and represent areas with little to no inhabitation during 

the first or second aerial surveys with greater numbers noted in 2016, perhaps also the 

consequence of newly exposed habitat.  Due to lack of sufficient data, I did not incorporate 

snowpack and glaciation into the model so this was not a feature influencing modeled 

dispersal patterns.  As such, density and distribution trends noted during any one of the aerial 

surveys should be considered when evaluating modeled dispersal.  Application of this new 

consideration may explain the previously mentioned incongruency noted around Mount 

Olympus.        

 I noted two additional differences when comparing subpopulation aggregation 

patterns of the model and aerial surveys.  For every survey year, counts for the ridges 

surrounding Gray Wolf River, Cameron Creek, and Grand Creek were meager to nonexistent 

while the model showed colonization of this area.  It is apparent that habitat features unique 

to that area and unrelated to elevation discourage goat presence.  The second difference was 

noted at Mount Washington, just over the southeastern park boundary.  Modeled dispersal at 

year 55 shows fewer goats inhabiting the area than counted during aerial survey in 1983.  
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Mount Washington is situated at the far edge of suitable mountain goat habitat and is 

surrounded on three sides by river valleys and lakes, leaving only one entry point that does 

not involve navigation of landscape features highly resistant to movement.  It is possible that 

this relative inaccessibility, combined with Mount Washington’s location at the far edge of 

the range, may have limited modeled dispersal to this area.  Additionally, I only considered 

dispersal distribution for one of the ten total modeled runs and other modeled runs potentially 

may have shown greater inhabitation of this area. 

 Anecdotal reports of dispersal progress after introduction cite the year a mountain 

goat was first reported in an area as well as the year the first nanny with kid-at-heel was 

reported.  For most sites, the difference between these events is five to 15 years (Moorhead 

and Stevens 1982).  At Mount Appleton and Klahhane Ridge, the difference was 

substantially greater at 41 and 30 years respectively.  Modeled dispersal progress did not 

follow this same trend.  It seems unlikely that goats of both sexes would pass through these 

areas to colonize other portions of the range unless these areas were characterized by less 

than ideal habitat features.  However, the subsequent return to these areas and relatively high 

densities found in both during the 1983 aerial survey suggest that this was not the case.  

Based on this, I would assume that anecdotal records did not reflect the actual year of first 

presence but rather simply the year of first report.  These records were not the result of any 

systematic or consistent surveys and failed to reflect the earlier occupancy of each site.        

 

6.2 Sensitivity Analyses 

Sensitivity analyses revealed that population growth was not sensitive to 10% changes in 

adult male mortality and was quite sensitive to the same changes in adult female mortality.  



 

56 
 

Increases in adult female mortality have been found by many others to have a strong negative 

impact on population growth rate (Gaillard et al. 1998, Langvatn and Loison 1999, Gaillard 

et al. 2000) and this fact has been embraced by game managers who utilize restricted harvest 

on productive females to help maintain stable population sizes.   

 Modeled population growth was more sensitive to changes in reproductive rate than 

to either juvenile or adult female mortality.  These findings appears contrary to several other 

studies of mountain goats and ungulates in general where it was found that adult female 

survival produced the greatest change in population growth (Escos et al. 1994, Walsh et al. 

1995, Hamel et al. 2006).  However, it is impossible to make a direct comparison due to 

several factors, most significantly, those pertaining to mortality rate sensitivity.  As 

previously described, CDPOP applies mortality rates to the population rather than survival 

rates.  As such, in contrast to previous studies, I adjusted mortality by 10% rather than 

survival.  Because mortality rate values are lower than survival rate values, a +/- 10% 

adjustment based on these lower values would be smaller than one based on the larger values, 

thereby producing a smaller effect overall.  These studies also classified adults as at least 

three years and older while I classified them as two years and older due to the earlier 

primiparity in this population and their contribution to recruitment.  This difference changes 

the number of individuals in the population impacted by each parameter manipulation.  

Furthermore, the earlier primiparity of the modeled population no doubt increased the 

influence reproductive rate has on population growth.   

 It is generally true that juvenile survival rates are naturally more variable than 

reproductive rates, which are in turn more variable than adult survival rates.  This means that 

functionally, adult survival, though found to have a high impact on population growth, does 
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not necessarily have a greater influence on this growth than recruitment or juvenile survival 

since the latter of the two shows considerably greater natural variation resulting in the 

potential for stronger influence.  In terms of my modeled population, reproductive rates, 

which have moderately high natural variation, are also shown to have the greatest influence 

on population growth meaning that natural variation in this vital rate could have a sizeable 

impact on population viability.      

 

6.3 Model Validation 

I successfully validated the model for removal scenarios where 75% to 80% of the animals 

removed were female.  While there are no records indicating the sex of captured animals, it is 

reasonable to assume that adult females may have been captured at a disproportionately 

greater rate than adult males due to relative ease of capture.  At Caw Ridge in British 

Columbia nannies traveled in nursery groups averaging 11.9 individuals while males were 

three times more likely to be observed alone and had a group size averaging 2.6 (Festa-

Bianchet and Cote 2008), making adult females and their cohorts much easier to spot during 

ground or aerial survey and capture efforts.  Adult males also spent approximately half their 

time in forested areas while nursery groups were almost always observed in open spaces 

(Festa-Bianchet and Cote 2008), thereby further increasing their sightability.  Two capture 

reports for collaring efforts in Alaska (Nichols 1980) and Washington (Jenkins et al. 2011a) 

documented a greater proportion of captured females.  In Alaska, the sex ratio of captured 

goats three years and under was equivalent while 75% of the adults captured were female (9 

out of 12).  Seventy four percent (17/23) of the total captures in Washington were female.  
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This disruption of the sex ratio in favor of males caused by disproportionate removal was 

evidently of considerable detriment to population growth. 

 Biased capture, along with additional kid deaths likely resulting from the removal of 

associated nannies, would easily explain the population decline of greater magnitude than the 

removals and the continued decline and stasis the following decade.  Between 1985 and 

1989, 66% of the adult females captured during the removal efforts in the Olympics were 

lactating.  Records from the aforementioned captures in Alaska and Washington documented 

similar statistics.  In Alaska, 78% of the captured adult females had kids (Nichols 1980).  

While capture records for Washington were incomplete (lactation status was not documented 

for three females), at least 64% of the females captured were lactating (Jenkins et al. 2011).  

Age class estimates were not recorded for these captured animals so it is unknown whether 

the two captured females identified as non-lactating were adults, which makes direct 

comparison to the percentages from ONP and Alaska difficult but does grant confirmation 

that the 66% observation from the Olympic captures is reasonable and perhaps even modest.   

 Between 1981 and 1989 there were 407 goats removed from Olympic National Park 

by the National Park Service (NPS), an additional 111 legally harvested outside park 

boundaries, and another three harvested illegally within park boundaries.  Prior to this time, 

40 goats had also been removed from Klahhane Ridge by NPS personnel.  Assuming a 75% 

female bias for removals (335 females) and a 66% lactation rate for captured adult females, 

approximately 221 kids would have suffered mortality related to the 447 removals conducted 

by park officials.  According to mountain goat harvest records for the state of Washington 

from 1948 – 1981, approximately 49% of animals harvested annually were male (Johnson 

1983).  Assuming half of the 114 animals harvested were female, 38 kids would have 
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suffered related mortality.  In summary, there is strong likelihood that a total of 

approximately 820 goats were removed, either directly or indirectly, from the Olympic 

Range between 1972 and 1989, including 259 kids and 392 females.  While not all of these 

animals were removed between the 1983 and 1990 surveys, the disruption of natural sex and 

age ratios would have lasting impacts.  A high number of reproducing females were removed 

along with a large portion of the future reproducing population, with both factors likely 

driving the observed population decline.  Sex ratios were restored after twelve years for 

modeled populations which is similar to the time that observed populations began to increase 

again.       

 

6.4 Observed Heterozygosity 

Modeled observed heterozygosity was strikingly different from that documented by Shirk 

(2009) for mountain goats in the Olympic Range.  While I anticipated observed 

heterozygosity to be high during the modeled period from introduction until 1983 due to the 

intermixing of two very distinct source populations, I was surprised the subsequent 

population reduction did not produce a dramatic decline in Ho.  This discrepancy between 

modeled and observed Ho could result from a number of causes.  First, the Shirk 2009 sample 

size was small (n=12) and possibly did not capture the true Ho of the Olympic Range.  Error 

in measurements due to sampling effects is a known but ongoing area of research in 

population genetics (Landguth et al. 2012b, Oyler-McCance et al. 2013).  However, my 

spatially selective sampling trial largely discredits this possibility.  Second, introduction 

conditions related to sex and genetics were unknown so the discrepancy could also result if 

the true Ho of the founding goats was different from what I applied in the model.  Genotypes 
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for individual founding goats were randomly created for each run based on allele frequencies 

calculated from samples collected between 2004 and 2009 near the originating translocation 

sites.  Ho values may have been considerably different eighty years prior when the founding 

goats were actually retrieved but it is impossible to predict this difference due to the 

complexity of population dynamics.  Additionally, modeled genotypes were generated 

assuming a low degree of genetic relatedness. The genotypes of the founders in my 

simulations were based on a random draw from large source populations with high genetic 

diversity. In reality it is likely that the goats captured for translocation were closely related 

due to the composition of nursery groups.  This relatedness would reduce overall genetic 

diversity of the founding population far below that used in my simulations.  Finally, the small 

size of each group brought from BC and Alaska (group sizes of 4, 2, and 5 or 6) makes the 

potential for genetic admixing highly vulnerable to sex composition and mortality.  If there 

was at least one male from each of the three originating locations and these males survived to 

reproduce with females from different locations, genetic admixing would be high.  However, 

if males were not captured at every location or there was not a male surviving to reproduce 

from every location, then admixing would be reduced as females are not as likely as males to 

take more than one mate.  Furthermore, if every member of one of the groups died this would 

completely eliminate genetic influence from that particular area, reducing Ho considerably. 

 A third and final factor contributing to the discrepancy between the Ho observed by 

Shirk and modeled Ho relates to the deterministic nature of the CDPOP model.  The founding 

mountain goat population in the Olympic range was derived from a small number of 

founding individuals.  As a result, alleles possessed by the founding individuals will be 

frequent in the founding population as well.  Genetic drift accompanying this founder event, 
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and accentuated by the new population’s small size, is known as a founder effect (Hartl 2000, 

Templeton 2006).  Genetic drift results in a reduction in genetic variability (Halliburton 

2004, Templeton 2006).  For the first few decades after introduction, the founding population 

would have experienced periods of decline and growth in response to natural stochasticity in 

vital rates and environmental conditions.  This variability was not reflected in the model.  

Genetic drift during periods when the population was at a relatively small size would have a 

significant and deleterious impact on diversity that would persist as the population entered 

the subsequent period of growth, a phenomenon known at a bottleneck effect (Halliburton 

2004, Templeton 2006).  Small, isolated populations are additionally vulnerable to 

inbreeding which decreases the frequency of heterozygous genotypes (Hartl 2000).  

Continuous growth simulated by the model would have omitted stochastic population 

fluctuations, most importantly population declines, thereby lessening genetic drift and 

inbreeding depression, and producing artificially higher observed heterozygosity.        

 

6.5 Model Limitations 

I recognize that this model, as with all models, inherently possesses limitations.  When 

estimating model parameters, it is impossible to know precise vital rates for a given 

population at any moment in time.  I made my estimates based on thorough review of the 

literature but variation exists between individuals and environments, and across landscapes 

and time.  Additionally, the extent of mountain goat research is limited, especially in relation 

to expanding populations, so while my review was thorough, the data informing many 

parameters were few.  My model does not account for environmental stochasticity, including 

fluctuations in climate, predation, or nutrient availability that are certain to have a dramatic 
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impact on population viability.  Furthermore, the model prohibited the application of 

standard deviations to most vital rates.  While adult survivorship for mountain goats is 

known to be fairly stable (Festa-Bianchet et al. 2003), juvenile survival, especially that of 

kids, can vary widely (Chadwick 1977, Stevens 1983).  At Caw Ridge, year-to-year kid 

survival varied from 38 to 92% (Festa-Bianchet and Cote 2008).  The stochasticity of 

population dynamics is apparent in the variation between observed population estimates the 

first decade after removal.  Variations such as this were not reflected by the model and 

instead were represented by mean values intending to capture the general trends of an age 

class over time.  This produced a population-growth-trend curve rather than the undulating 

line characteristic of true populations, likely impacting Ho as discussed above.   

 While no ecological model can ever be entirely accurate due to the complexity and 

dynamics of related processes, some models can be extremely useful for attempting to 

understand and predict complex phenomena.  This particular model has been successfully 

calibrated and validated using empirical data, confirming its potential to further our 

understanding of mountain goat population dynamics and to inform management decisions 

related to removal and augmentation.  This model is the first spatially explicit, individual-

based introduction model for mountain goats and represents a novel contribution to the field 

of wildlife management.      

 

7.0 Management Implications 

My model clearly demonstrates the negative impact a reduction in the number of females will 

have on population viability.  If the goal in ONP is to drastically reduce or eliminate 

mountain goats from the Olympic Range, removal efforts should be highly biased toward 
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females, with minimal effort invested in locating and capturing adult males.  Furthermore, 

female dominated nursery groups have greater sightability which facilitates ease of capture, 

reducing risk to capture crews.  Primarily removing females has the greatest likelihood of 

slowing and even preventing additional population growth over the next decade.  Initiating a 

period of negative growth would alleviate considerable time pressure from land managers as 

additional population control measures were enacted.  Conversely, augmenting North 

Cascade populations with high numbers of females has the greatest chance of improving 

population viability.  Adherence to capture protocol focused entirely on nursery groups 

satisfies objectives of land managers for both ranges, ensuring the greatest probability of 

success in each case, thereby maximizing time and monetary resources invested in each 

project.   

 The current model could additionally be applied to estimate the number of removals 

necessary to push the Olympic population into an extinction vortex (Gilpin and Soule 1986).  

This information would provide invaluable feedback to NPS personnel as final population 

management decisions are assessed.  With some manipulation of parameter estimates, this 

model could also be used to evaluate augmentation scenarios in the North Cascades.  
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Appendices 

Appendix A. Parameter estimation supplemental information 

Table A-1.  Caw Ridge survival and reproductive rates compared to parameter estimates used 
in the “12 Founder” and “11 Founder” scenarios.  Juvenile (0-1) and >9 years survivorship, 
and reproductive rates of 2-4 year old females were adjusted based on data from expanding 
populations. 

 

 

Table A-2.  Female reproductive rates for age classes 0-4 
from three introduced populations.  The means of these 
rates were used to inform model parameter estimates. 

 

 

 

 

 

 

 

 Female Survival Male Survival Female Reproductive Rate 

Age Class Caw Ridge Model Caw Ridge Model Caw Ridge Model 

0 64 69.5 64 69.5 0 0 

1 84.7 84.7 73.5 73.5 0 0 

2 90 90 74 74 0 13.4 

3 90 90 75 75 3.9 61.8 

4 97.5 97.5 92 92 49 70.8 

5 95 95 78.5 78.5 67.2 67.2 

6 95 95 92 92 73.8 73.8 

7 96 96 86 86 73 73 

8 91.5 91.5 70 70 78.6 78.6 

9 100 76.5 72.5 63.5 84 84 

10 85 76.5 57 63.5 81.4 81.4 

11 80 76.5 67 63.5 81.8 81.8 

12 88 76.5 0 0 78.3 78.3 

13 45 76.5 0 0 72.2 72.2 

14 56 0 0 0 64 0 

Age 
Class 

Stevens 
1983 

Bailey 
1991 

Smith 
1984 

 
Mean 

0 0 0 0 0 

1 0 0 0 0 

2 11.11 0 38 16.37 

3 78.39 52 64 64.80 

4 92.97 66 60 72.99 
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Table A-3.  Juvenile survivorship (%) for expanding and established 
populations.  Multiple survival rates were listed when authors provided 
separate rates for each year of their study rather than means.  Overall 
means were used to inform model parameter estimates. 

Percent Kid Survival 

Expanding Populations Established Populations 

57 Adams & Bailey 1982 67, 71 Smith 1976 

70 Stevens 1983 59, 73 Chadwick 1977 

88 Hayden 1984 62 Dane 2002 

67 Dane 2002 64 Festa-Bianchet & Cote 2008 

70.5 mean 66 mean 

 

Percent Yearling Survival 

Expanding Populations Established Populations 

72 Dane 2002 70 Dane 2002 

71 Smith 1986 100, 67 Smith 1976 

95 Hayden 1984 56, 85 Chadwick 1977 

79.3 mean 75.6 mean 

 

 

Table A-4.  Twinning rates (%) for expanding and established populations.  Two rates are 
listed for the same author when study results were presented by year rather than mean for all 
years.   

Expanding Populations Established Populations 

18 Foster 1985 33* Hayden 1984 1.4** Stevens 1983 
35* Lentfer 1955 8.9 Varley 1996 2 Festa-Bianchet et al. 1994 
27* Lentfer 1955 5.8** Stevens 1983 10 Chadwick 1977 
12.4 Houston et al. 1994 9 Bailey 1991   
25* Hayden 1984     

*Rates for expanding populations observed less than 15 years after introduction. 

**Established twinning rate for Klahhane Ridge in the Olympic mountains.  The expanding rate is for 
the other studied subpopulations distributed across the range. 
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Table A-5. Model parameter description, estimate, and source. 

 

Parameter Model Estimate Source/s 

Mean offspring 1 Hutchins and Hansen 1982; Johnson 1983;  
Festa-Bianchet and Cote  2008 
 

Offspring sex ratio  Equal Stevens 1983; Festa-Bianchet and Cote  2008 
 

Mate Replacement* Male Polygamy Wigal and Coggins 1982; Johnson 1983; 
Mainguy et al 2008 
 

Mate movement 
probability function 

Gaussian  

Mean 6.5 km Smith & Raedeke 1982 

Standard deviation 5.5 km Smith & Raedeke 1982 

Maximum threshold 25 km Smith & Raedeke 1982 

 

Female natal dispersal 
probability function 

Negative 
Exponential 

 

Equation 10-0.00007*cd  

Maximum threshold 54 km Stevens 1983 

Total females 2% Stevens 1983;  Festa-Bianchet and Cote 2008 

Total female kids 12%  
 

Male natal dispersal 
probability function 

Negative 
Exponential 

 

Equation 10-0.00001*cd  

Maximum threshold 48 km Stevens 1983 

Total males 14% Stevens 1983; Festa-Bianchet and Cote 2008 

Total male kids 49% Festa-Bianchet and Cote  2008 

 

Twinning 5.7% Stevens 1983 

 

Philopatry (strict) No Stevens 1983; Festa-Bianchet and Cote 2008 
 

Population growth model Exponential Stevens 1983; Houston et al 1994 

 

Number of loci 19 Shafer et al 2011 

 

Maximum number of 
alleles/locus 

29 Shafer et al 2011; Mainguy et al 2008 
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Appendix B. Modeled natal dispersal results 
 

 

Figure B-1.  Modeled dispersal by sex for 1947.  Male mountain goats are 
symbolized by open circles and females are symbolized by filled stars.  Year of 
actual first mountain goat sightings at sites specified by green triangles shown 
followed by year of first nanny with kid-at-heel sightings (parentheses).  Modeled 
dispersal in 1947 shows goats inhabiting the Mount Olympus and the central 
range, which was not consistent with observed dispersal.  A few goats are seen 
near Mount Anderson which matches observations at that time. 
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Figure B-2.  Modeled dispersal by sex for 1959.  Male mountain goats are symbolized 
by open circles and females are symbolized by filled stars. Year of actual first 
mountain goat sightings at sites specified by green triangles shown followed by year of 
first nanny with kid-at-heel sightings (parentheses).  Modeled dispersal in 1959 shows 
goats inhabiting the central range, which was not consistent with observed dispersal. 
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Figure B-3.  Modeled dispersal by sex for 1968.  Male mountain goats are symbolized by 
open circles and females are symbolized by filled stars.  Year of actual first mountain goat 
sightings at sites specified by green triangles shown followed by year of first nanny with kid-
at-heel sightings (parentheses).  Modeled dispersal in 1968 shows sizeable subpopulations 
inhabiting the ridges near Grey Wolf River and its tributaries. 

 


